Step |
Hyp |
Ref |
Expression |
1 |
|
ax12inda.1 |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑤 → ( 𝑥 = 𝑤 → ( 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑤 → 𝜑 ) ) ) ) |
2 |
|
ax6ev |
⊢ ∃ 𝑤 𝑤 = 𝑦 |
3 |
1
|
ax12inda2 |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑤 → ( 𝑥 = 𝑤 → ( ∀ 𝑧 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑤 → ∀ 𝑧 𝜑 ) ) ) ) |
4 |
|
dveeq2-o |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝑤 = 𝑦 → ∀ 𝑥 𝑤 = 𝑦 ) ) |
5 |
4
|
imp |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ 𝑤 = 𝑦 ) → ∀ 𝑥 𝑤 = 𝑦 ) |
6 |
|
hba1-o |
⊢ ( ∀ 𝑥 𝑤 = 𝑦 → ∀ 𝑥 ∀ 𝑥 𝑤 = 𝑦 ) |
7 |
|
equequ2 |
⊢ ( 𝑤 = 𝑦 → ( 𝑥 = 𝑤 ↔ 𝑥 = 𝑦 ) ) |
8 |
7
|
sps-o |
⊢ ( ∀ 𝑥 𝑤 = 𝑦 → ( 𝑥 = 𝑤 ↔ 𝑥 = 𝑦 ) ) |
9 |
6 8
|
albidh |
⊢ ( ∀ 𝑥 𝑤 = 𝑦 → ( ∀ 𝑥 𝑥 = 𝑤 ↔ ∀ 𝑥 𝑥 = 𝑦 ) ) |
10 |
9
|
notbid |
⊢ ( ∀ 𝑥 𝑤 = 𝑦 → ( ¬ ∀ 𝑥 𝑥 = 𝑤 ↔ ¬ ∀ 𝑥 𝑥 = 𝑦 ) ) |
11 |
5 10
|
syl |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ 𝑤 = 𝑦 ) → ( ¬ ∀ 𝑥 𝑥 = 𝑤 ↔ ¬ ∀ 𝑥 𝑥 = 𝑦 ) ) |
12 |
7
|
adantl |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ 𝑤 = 𝑦 ) → ( 𝑥 = 𝑤 ↔ 𝑥 = 𝑦 ) ) |
13 |
8
|
imbi1d |
⊢ ( ∀ 𝑥 𝑤 = 𝑦 → ( ( 𝑥 = 𝑤 → ∀ 𝑧 𝜑 ) ↔ ( 𝑥 = 𝑦 → ∀ 𝑧 𝜑 ) ) ) |
14 |
6 13
|
albidh |
⊢ ( ∀ 𝑥 𝑤 = 𝑦 → ( ∀ 𝑥 ( 𝑥 = 𝑤 → ∀ 𝑧 𝜑 ) ↔ ∀ 𝑥 ( 𝑥 = 𝑦 → ∀ 𝑧 𝜑 ) ) ) |
15 |
5 14
|
syl |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ 𝑤 = 𝑦 ) → ( ∀ 𝑥 ( 𝑥 = 𝑤 → ∀ 𝑧 𝜑 ) ↔ ∀ 𝑥 ( 𝑥 = 𝑦 → ∀ 𝑧 𝜑 ) ) ) |
16 |
15
|
imbi2d |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ 𝑤 = 𝑦 ) → ( ( ∀ 𝑧 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑤 → ∀ 𝑧 𝜑 ) ) ↔ ( ∀ 𝑧 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑦 → ∀ 𝑧 𝜑 ) ) ) ) |
17 |
12 16
|
imbi12d |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ 𝑤 = 𝑦 ) → ( ( 𝑥 = 𝑤 → ( ∀ 𝑧 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑤 → ∀ 𝑧 𝜑 ) ) ) ↔ ( 𝑥 = 𝑦 → ( ∀ 𝑧 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑦 → ∀ 𝑧 𝜑 ) ) ) ) ) |
18 |
11 17
|
imbi12d |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ 𝑤 = 𝑦 ) → ( ( ¬ ∀ 𝑥 𝑥 = 𝑤 → ( 𝑥 = 𝑤 → ( ∀ 𝑧 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑤 → ∀ 𝑧 𝜑 ) ) ) ) ↔ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝑥 = 𝑦 → ( ∀ 𝑧 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑦 → ∀ 𝑧 𝜑 ) ) ) ) ) ) |
19 |
3 18
|
mpbii |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ 𝑤 = 𝑦 ) → ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝑥 = 𝑦 → ( ∀ 𝑧 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑦 → ∀ 𝑧 𝜑 ) ) ) ) ) |
20 |
19
|
ex |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝑤 = 𝑦 → ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝑥 = 𝑦 → ( ∀ 𝑧 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑦 → ∀ 𝑧 𝜑 ) ) ) ) ) ) |
21 |
20
|
exlimdv |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( ∃ 𝑤 𝑤 = 𝑦 → ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝑥 = 𝑦 → ( ∀ 𝑧 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑦 → ∀ 𝑧 𝜑 ) ) ) ) ) ) |
22 |
2 21
|
mpi |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝑥 = 𝑦 → ( ∀ 𝑧 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑦 → ∀ 𝑧 𝜑 ) ) ) ) ) |
23 |
22
|
pm2.43i |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝑥 = 𝑦 → ( ∀ 𝑧 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑦 → ∀ 𝑧 𝜑 ) ) ) ) |