Step |
Hyp |
Ref |
Expression |
1 |
|
ax12inda2.1 |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝑥 = 𝑦 → ( 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ) ) ) |
2 |
|
ax-1 |
⊢ ( ∀ 𝑧 𝜑 → ( 𝑥 = 𝑦 → ∀ 𝑧 𝜑 ) ) |
3 |
|
axc16g-o |
⊢ ( ∀ 𝑦 𝑦 = 𝑧 → ( ( 𝑥 = 𝑦 → ∀ 𝑧 𝜑 ) → ∀ 𝑥 ( 𝑥 = 𝑦 → ∀ 𝑧 𝜑 ) ) ) |
4 |
2 3
|
syl5 |
⊢ ( ∀ 𝑦 𝑦 = 𝑧 → ( ∀ 𝑧 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑦 → ∀ 𝑧 𝜑 ) ) ) |
5 |
4
|
a1d |
⊢ ( ∀ 𝑦 𝑦 = 𝑧 → ( 𝑥 = 𝑦 → ( ∀ 𝑧 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑦 → ∀ 𝑧 𝜑 ) ) ) ) |
6 |
5
|
a1d |
⊢ ( ∀ 𝑦 𝑦 = 𝑧 → ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝑥 = 𝑦 → ( ∀ 𝑧 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑦 → ∀ 𝑧 𝜑 ) ) ) ) ) |
7 |
1
|
ax12indalem |
⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑧 → ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝑥 = 𝑦 → ( ∀ 𝑧 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑦 → ∀ 𝑧 𝜑 ) ) ) ) ) |
8 |
6 7
|
pm2.61i |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝑥 = 𝑦 → ( ∀ 𝑧 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑦 → ∀ 𝑧 𝜑 ) ) ) ) |