Step |
Hyp |
Ref |
Expression |
1 |
|
ax12inda2.1 |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝑥 = 𝑦 → ( 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ) ) ) |
2 |
|
ax-1 |
⊢ ( ∀ 𝑥 𝜑 → ( 𝑥 = 𝑦 → ∀ 𝑥 𝜑 ) ) |
3 |
2
|
axc4i-o |
⊢ ( ∀ 𝑥 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑦 → ∀ 𝑥 𝜑 ) ) |
4 |
3
|
a1i |
⊢ ( ∀ 𝑧 𝑧 = 𝑥 → ( ∀ 𝑥 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑦 → ∀ 𝑥 𝜑 ) ) ) |
5 |
|
biidd |
⊢ ( ∀ 𝑧 𝑧 = 𝑥 → ( 𝜑 ↔ 𝜑 ) ) |
6 |
5
|
dral1-o |
⊢ ( ∀ 𝑧 𝑧 = 𝑥 → ( ∀ 𝑧 𝜑 ↔ ∀ 𝑥 𝜑 ) ) |
7 |
6
|
imbi2d |
⊢ ( ∀ 𝑧 𝑧 = 𝑥 → ( ( 𝑥 = 𝑦 → ∀ 𝑧 𝜑 ) ↔ ( 𝑥 = 𝑦 → ∀ 𝑥 𝜑 ) ) ) |
8 |
7
|
dral2-o |
⊢ ( ∀ 𝑧 𝑧 = 𝑥 → ( ∀ 𝑥 ( 𝑥 = 𝑦 → ∀ 𝑧 𝜑 ) ↔ ∀ 𝑥 ( 𝑥 = 𝑦 → ∀ 𝑥 𝜑 ) ) ) |
9 |
4 6 8
|
3imtr4d |
⊢ ( ∀ 𝑧 𝑧 = 𝑥 → ( ∀ 𝑧 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑦 → ∀ 𝑧 𝜑 ) ) ) |
10 |
9
|
aecoms-o |
⊢ ( ∀ 𝑥 𝑥 = 𝑧 → ( ∀ 𝑧 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑦 → ∀ 𝑧 𝜑 ) ) ) |
11 |
10
|
a1d |
⊢ ( ∀ 𝑥 𝑥 = 𝑧 → ( 𝑥 = 𝑦 → ( ∀ 𝑧 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑦 → ∀ 𝑧 𝜑 ) ) ) ) |
12 |
11
|
a1d |
⊢ ( ∀ 𝑥 𝑥 = 𝑧 → ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝑥 = 𝑦 → ( ∀ 𝑧 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑦 → ∀ 𝑧 𝜑 ) ) ) ) ) |
13 |
|
simplr |
⊢ ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) ∧ 𝑥 = 𝑦 ) → ¬ ∀ 𝑥 𝑥 = 𝑦 ) |
14 |
|
dveeq1-o |
⊢ ( ¬ ∀ 𝑧 𝑧 = 𝑥 → ( 𝑥 = 𝑦 → ∀ 𝑧 𝑥 = 𝑦 ) ) |
15 |
14
|
naecoms-o |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑧 → ( 𝑥 = 𝑦 → ∀ 𝑧 𝑥 = 𝑦 ) ) |
16 |
15
|
imp |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ 𝑥 = 𝑦 ) → ∀ 𝑧 𝑥 = 𝑦 ) |
17 |
16
|
adantlr |
⊢ ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) ∧ 𝑥 = 𝑦 ) → ∀ 𝑧 𝑥 = 𝑦 ) |
18 |
|
hbnae-o |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ∀ 𝑧 ¬ ∀ 𝑥 𝑥 = 𝑦 ) |
19 |
|
hba1-o |
⊢ ( ∀ 𝑧 𝑥 = 𝑦 → ∀ 𝑧 ∀ 𝑧 𝑥 = 𝑦 ) |
20 |
18 19
|
hban |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ∀ 𝑧 𝑥 = 𝑦 ) → ∀ 𝑧 ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ∀ 𝑧 𝑥 = 𝑦 ) ) |
21 |
|
ax-c5 |
⊢ ( ∀ 𝑧 𝑥 = 𝑦 → 𝑥 = 𝑦 ) |
22 |
1
|
imp |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ 𝑥 = 𝑦 ) → ( 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ) ) |
23 |
21 22
|
sylan2 |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ∀ 𝑧 𝑥 = 𝑦 ) → ( 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ) ) |
24 |
20 23
|
alimdh |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ∀ 𝑧 𝑥 = 𝑦 ) → ( ∀ 𝑧 𝜑 → ∀ 𝑧 ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ) ) |
25 |
13 17 24
|
syl2anc |
⊢ ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) ∧ 𝑥 = 𝑦 ) → ( ∀ 𝑧 𝜑 → ∀ 𝑧 ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ) ) |
26 |
|
ax-11 |
⊢ ( ∀ 𝑧 ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) → ∀ 𝑥 ∀ 𝑧 ( 𝑥 = 𝑦 → 𝜑 ) ) |
27 |
|
hbnae-o |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑧 → ∀ 𝑥 ¬ ∀ 𝑥 𝑥 = 𝑧 ) |
28 |
|
hbnae-o |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑧 → ∀ 𝑧 ¬ ∀ 𝑥 𝑥 = 𝑧 ) |
29 |
28 15
|
nf5dh |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑧 → Ⅎ 𝑧 𝑥 = 𝑦 ) |
30 |
|
19.21t |
⊢ ( Ⅎ 𝑧 𝑥 = 𝑦 → ( ∀ 𝑧 ( 𝑥 = 𝑦 → 𝜑 ) ↔ ( 𝑥 = 𝑦 → ∀ 𝑧 𝜑 ) ) ) |
31 |
29 30
|
syl |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑧 → ( ∀ 𝑧 ( 𝑥 = 𝑦 → 𝜑 ) ↔ ( 𝑥 = 𝑦 → ∀ 𝑧 𝜑 ) ) ) |
32 |
27 31
|
albidh |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑧 → ( ∀ 𝑥 ∀ 𝑧 ( 𝑥 = 𝑦 → 𝜑 ) ↔ ∀ 𝑥 ( 𝑥 = 𝑦 → ∀ 𝑧 𝜑 ) ) ) |
33 |
26 32
|
syl5ib |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑧 → ( ∀ 𝑧 ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) → ∀ 𝑥 ( 𝑥 = 𝑦 → ∀ 𝑧 𝜑 ) ) ) |
34 |
33
|
ad2antrr |
⊢ ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) ∧ 𝑥 = 𝑦 ) → ( ∀ 𝑧 ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) → ∀ 𝑥 ( 𝑥 = 𝑦 → ∀ 𝑧 𝜑 ) ) ) |
35 |
25 34
|
syld |
⊢ ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) ∧ 𝑥 = 𝑦 ) → ( ∀ 𝑧 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑦 → ∀ 𝑧 𝜑 ) ) ) |
36 |
35
|
exp31 |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑧 → ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝑥 = 𝑦 → ( ∀ 𝑧 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑦 → ∀ 𝑧 𝜑 ) ) ) ) ) |
37 |
12 36
|
pm2.61i |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝑥 = 𝑦 → ( ∀ 𝑧 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑦 → ∀ 𝑧 𝜑 ) ) ) ) |