Step |
Hyp |
Ref |
Expression |
1 |
|
ax12indalem.1 |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝑥 = 𝑦 → ( 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ) ) ) |
2 |
|
ax-1 |
⊢ ( ∀ 𝑥 𝜑 → ( 𝑥 = 𝑦 → ∀ 𝑥 𝜑 ) ) |
3 |
2
|
axc4i-o |
⊢ ( ∀ 𝑥 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑦 → ∀ 𝑥 𝜑 ) ) |
4 |
3
|
a1i |
⊢ ( ∀ 𝑧 𝑧 = 𝑥 → ( ∀ 𝑥 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑦 → ∀ 𝑥 𝜑 ) ) ) |
5 |
|
biidd |
⊢ ( ∀ 𝑧 𝑧 = 𝑥 → ( 𝜑 ↔ 𝜑 ) ) |
6 |
5
|
dral1-o |
⊢ ( ∀ 𝑧 𝑧 = 𝑥 → ( ∀ 𝑧 𝜑 ↔ ∀ 𝑥 𝜑 ) ) |
7 |
6
|
imbi2d |
⊢ ( ∀ 𝑧 𝑧 = 𝑥 → ( ( 𝑥 = 𝑦 → ∀ 𝑧 𝜑 ) ↔ ( 𝑥 = 𝑦 → ∀ 𝑥 𝜑 ) ) ) |
8 |
7
|
dral2-o |
⊢ ( ∀ 𝑧 𝑧 = 𝑥 → ( ∀ 𝑥 ( 𝑥 = 𝑦 → ∀ 𝑧 𝜑 ) ↔ ∀ 𝑥 ( 𝑥 = 𝑦 → ∀ 𝑥 𝜑 ) ) ) |
9 |
4 6 8
|
3imtr4d |
⊢ ( ∀ 𝑧 𝑧 = 𝑥 → ( ∀ 𝑧 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑦 → ∀ 𝑧 𝜑 ) ) ) |
10 |
9
|
aecoms-o |
⊢ ( ∀ 𝑥 𝑥 = 𝑧 → ( ∀ 𝑧 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑦 → ∀ 𝑧 𝜑 ) ) ) |
11 |
10
|
a1d |
⊢ ( ∀ 𝑥 𝑥 = 𝑧 → ( 𝑥 = 𝑦 → ( ∀ 𝑧 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑦 → ∀ 𝑧 𝜑 ) ) ) ) |
12 |
11
|
a1d |
⊢ ( ∀ 𝑥 𝑥 = 𝑧 → ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝑥 = 𝑦 → ( ∀ 𝑧 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑦 → ∀ 𝑧 𝜑 ) ) ) ) ) |
13 |
12
|
adantr |
⊢ ( ( ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝑥 = 𝑦 → ( ∀ 𝑧 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑦 → ∀ 𝑧 𝜑 ) ) ) ) ) |
14 |
|
simplr |
⊢ ( ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) ∧ 𝑥 = 𝑦 ) → ¬ ∀ 𝑥 𝑥 = 𝑦 ) |
15 |
|
aecom-o |
⊢ ( ∀ 𝑧 𝑧 = 𝑥 → ∀ 𝑥 𝑥 = 𝑧 ) |
16 |
15
|
con3i |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑧 → ¬ ∀ 𝑧 𝑧 = 𝑥 ) |
17 |
|
aecom-o |
⊢ ( ∀ 𝑧 𝑧 = 𝑦 → ∀ 𝑦 𝑦 = 𝑧 ) |
18 |
17
|
con3i |
⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑧 → ¬ ∀ 𝑧 𝑧 = 𝑦 ) |
19 |
|
axc9 |
⊢ ( ¬ ∀ 𝑧 𝑧 = 𝑥 → ( ¬ ∀ 𝑧 𝑧 = 𝑦 → ( 𝑥 = 𝑦 → ∀ 𝑧 𝑥 = 𝑦 ) ) ) |
20 |
19
|
imp |
⊢ ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ) → ( 𝑥 = 𝑦 → ∀ 𝑧 𝑥 = 𝑦 ) ) |
21 |
16 18 20
|
syl2an |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → ( 𝑥 = 𝑦 → ∀ 𝑧 𝑥 = 𝑦 ) ) |
22 |
21
|
imp |
⊢ ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) ∧ 𝑥 = 𝑦 ) → ∀ 𝑧 𝑥 = 𝑦 ) |
23 |
22
|
adantlr |
⊢ ( ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) ∧ 𝑥 = 𝑦 ) → ∀ 𝑧 𝑥 = 𝑦 ) |
24 |
|
hbnae-o |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ∀ 𝑧 ¬ ∀ 𝑥 𝑥 = 𝑦 ) |
25 |
|
hba1-o |
⊢ ( ∀ 𝑧 𝑥 = 𝑦 → ∀ 𝑧 ∀ 𝑧 𝑥 = 𝑦 ) |
26 |
24 25
|
hban |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ∀ 𝑧 𝑥 = 𝑦 ) → ∀ 𝑧 ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ∀ 𝑧 𝑥 = 𝑦 ) ) |
27 |
|
ax-c5 |
⊢ ( ∀ 𝑧 𝑥 = 𝑦 → 𝑥 = 𝑦 ) |
28 |
1
|
imp |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ 𝑥 = 𝑦 ) → ( 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ) ) |
29 |
27 28
|
sylan2 |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ∀ 𝑧 𝑥 = 𝑦 ) → ( 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ) ) |
30 |
26 29
|
alimdh |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ∀ 𝑧 𝑥 = 𝑦 ) → ( ∀ 𝑧 𝜑 → ∀ 𝑧 ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ) ) |
31 |
14 23 30
|
syl2anc |
⊢ ( ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) ∧ 𝑥 = 𝑦 ) → ( ∀ 𝑧 𝜑 → ∀ 𝑧 ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ) ) |
32 |
|
ax-11 |
⊢ ( ∀ 𝑧 ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) → ∀ 𝑥 ∀ 𝑧 ( 𝑥 = 𝑦 → 𝜑 ) ) |
33 |
|
hbnae-o |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑧 → ∀ 𝑥 ¬ ∀ 𝑥 𝑥 = 𝑧 ) |
34 |
|
hbnae-o |
⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑧 → ∀ 𝑥 ¬ ∀ 𝑦 𝑦 = 𝑧 ) |
35 |
33 34
|
hban |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → ∀ 𝑥 ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) ) |
36 |
|
hbnae-o |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑧 → ∀ 𝑧 ¬ ∀ 𝑥 𝑥 = 𝑧 ) |
37 |
|
hbnae-o |
⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑧 → ∀ 𝑧 ¬ ∀ 𝑦 𝑦 = 𝑧 ) |
38 |
36 37
|
hban |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → ∀ 𝑧 ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) ) |
39 |
38 21
|
nf5dh |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑧 𝑥 = 𝑦 ) |
40 |
|
19.21t |
⊢ ( Ⅎ 𝑧 𝑥 = 𝑦 → ( ∀ 𝑧 ( 𝑥 = 𝑦 → 𝜑 ) ↔ ( 𝑥 = 𝑦 → ∀ 𝑧 𝜑 ) ) ) |
41 |
39 40
|
syl |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → ( ∀ 𝑧 ( 𝑥 = 𝑦 → 𝜑 ) ↔ ( 𝑥 = 𝑦 → ∀ 𝑧 𝜑 ) ) ) |
42 |
35 41
|
albidh |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → ( ∀ 𝑥 ∀ 𝑧 ( 𝑥 = 𝑦 → 𝜑 ) ↔ ∀ 𝑥 ( 𝑥 = 𝑦 → ∀ 𝑧 𝜑 ) ) ) |
43 |
32 42
|
syl5ib |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → ( ∀ 𝑧 ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) → ∀ 𝑥 ( 𝑥 = 𝑦 → ∀ 𝑧 𝜑 ) ) ) |
44 |
43
|
ad2antrr |
⊢ ( ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) ∧ 𝑥 = 𝑦 ) → ( ∀ 𝑧 ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) → ∀ 𝑥 ( 𝑥 = 𝑦 → ∀ 𝑧 𝜑 ) ) ) |
45 |
31 44
|
syld |
⊢ ( ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) ∧ 𝑥 = 𝑦 ) → ( ∀ 𝑧 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑦 → ∀ 𝑧 𝜑 ) ) ) |
46 |
45
|
exp31 |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝑥 = 𝑦 → ( ∀ 𝑧 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑦 → ∀ 𝑧 𝜑 ) ) ) ) ) |
47 |
13 46
|
pm2.61ian |
⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑧 → ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝑥 = 𝑦 → ( ∀ 𝑧 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑦 → ∀ 𝑧 𝜑 ) ) ) ) ) |