| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ax12indn.1 |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝑥 = 𝑦 → ( 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ) ) ) |
| 2 |
|
ax12indi.2 |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝑥 = 𝑦 → ( 𝜓 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜓 ) ) ) ) |
| 3 |
1
|
ax12indn |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝑥 = 𝑦 → ( ¬ 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑦 → ¬ 𝜑 ) ) ) ) |
| 4 |
3
|
imp |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ 𝑥 = 𝑦 ) → ( ¬ 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑦 → ¬ 𝜑 ) ) ) |
| 5 |
|
pm2.21 |
⊢ ( ¬ 𝜑 → ( 𝜑 → 𝜓 ) ) |
| 6 |
5
|
imim2i |
⊢ ( ( 𝑥 = 𝑦 → ¬ 𝜑 ) → ( 𝑥 = 𝑦 → ( 𝜑 → 𝜓 ) ) ) |
| 7 |
6
|
alimi |
⊢ ( ∀ 𝑥 ( 𝑥 = 𝑦 → ¬ 𝜑 ) → ∀ 𝑥 ( 𝑥 = 𝑦 → ( 𝜑 → 𝜓 ) ) ) |
| 8 |
4 7
|
syl6 |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ 𝑥 = 𝑦 ) → ( ¬ 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑦 → ( 𝜑 → 𝜓 ) ) ) ) |
| 9 |
2
|
imp |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ 𝑥 = 𝑦 ) → ( 𝜓 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜓 ) ) ) |
| 10 |
|
ax-1 |
⊢ ( 𝜓 → ( 𝜑 → 𝜓 ) ) |
| 11 |
10
|
imim2i |
⊢ ( ( 𝑥 = 𝑦 → 𝜓 ) → ( 𝑥 = 𝑦 → ( 𝜑 → 𝜓 ) ) ) |
| 12 |
11
|
alimi |
⊢ ( ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜓 ) → ∀ 𝑥 ( 𝑥 = 𝑦 → ( 𝜑 → 𝜓 ) ) ) |
| 13 |
9 12
|
syl6 |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ 𝑥 = 𝑦 ) → ( 𝜓 → ∀ 𝑥 ( 𝑥 = 𝑦 → ( 𝜑 → 𝜓 ) ) ) ) |
| 14 |
8 13
|
jad |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ 𝑥 = 𝑦 ) → ( ( 𝜑 → 𝜓 ) → ∀ 𝑥 ( 𝑥 = 𝑦 → ( 𝜑 → 𝜓 ) ) ) ) |
| 15 |
14
|
ex |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝑥 = 𝑦 → ( ( 𝜑 → 𝜓 ) → ∀ 𝑥 ( 𝑥 = 𝑦 → ( 𝜑 → 𝜓 ) ) ) ) ) |