| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ax12indn.1 |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝑥 = 𝑦 → ( 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ) ) ) |
| 2 |
|
19.8a |
⊢ ( ( 𝑥 = 𝑦 ∧ ¬ 𝜑 ) → ∃ 𝑥 ( 𝑥 = 𝑦 ∧ ¬ 𝜑 ) ) |
| 3 |
|
exanali |
⊢ ( ∃ 𝑥 ( 𝑥 = 𝑦 ∧ ¬ 𝜑 ) ↔ ¬ ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ) |
| 4 |
|
hbn1 |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ∀ 𝑥 ¬ ∀ 𝑥 𝑥 = 𝑦 ) |
| 5 |
|
hbn1 |
⊢ ( ¬ ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) → ∀ 𝑥 ¬ ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ) |
| 6 |
|
con3 |
⊢ ( ( 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ) → ( ¬ ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) → ¬ 𝜑 ) ) |
| 7 |
1 6
|
syl6 |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝑥 = 𝑦 → ( ¬ ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) → ¬ 𝜑 ) ) ) |
| 8 |
7
|
com23 |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( ¬ ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) → ( 𝑥 = 𝑦 → ¬ 𝜑 ) ) ) |
| 9 |
4 5 8
|
alrimdh |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( ¬ ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) → ∀ 𝑥 ( 𝑥 = 𝑦 → ¬ 𝜑 ) ) ) |
| 10 |
3 9
|
biimtrid |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( ∃ 𝑥 ( 𝑥 = 𝑦 ∧ ¬ 𝜑 ) → ∀ 𝑥 ( 𝑥 = 𝑦 → ¬ 𝜑 ) ) ) |
| 11 |
2 10
|
syl5 |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( ( 𝑥 = 𝑦 ∧ ¬ 𝜑 ) → ∀ 𝑥 ( 𝑥 = 𝑦 → ¬ 𝜑 ) ) ) |
| 12 |
11
|
expd |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝑥 = 𝑦 → ( ¬ 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑦 → ¬ 𝜑 ) ) ) ) |