Step |
Hyp |
Ref |
Expression |
1 |
|
ax12v2-o.1 |
⊢ ( 𝑥 = 𝑧 → ( 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑧 → 𝜑 ) ) ) |
2 |
|
ax6ev |
⊢ ∃ 𝑧 𝑧 = 𝑦 |
3 |
|
equequ2 |
⊢ ( 𝑧 = 𝑦 → ( 𝑥 = 𝑧 ↔ 𝑥 = 𝑦 ) ) |
4 |
3
|
adantl |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ 𝑧 = 𝑦 ) → ( 𝑥 = 𝑧 ↔ 𝑥 = 𝑦 ) ) |
5 |
|
dveeq2-o |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝑧 = 𝑦 → ∀ 𝑥 𝑧 = 𝑦 ) ) |
6 |
5
|
imp |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ 𝑧 = 𝑦 ) → ∀ 𝑥 𝑧 = 𝑦 ) |
7 |
|
nfa1-o |
⊢ Ⅎ 𝑥 ∀ 𝑥 𝑧 = 𝑦 |
8 |
3
|
imbi1d |
⊢ ( 𝑧 = 𝑦 → ( ( 𝑥 = 𝑧 → 𝜑 ) ↔ ( 𝑥 = 𝑦 → 𝜑 ) ) ) |
9 |
8
|
sps-o |
⊢ ( ∀ 𝑥 𝑧 = 𝑦 → ( ( 𝑥 = 𝑧 → 𝜑 ) ↔ ( 𝑥 = 𝑦 → 𝜑 ) ) ) |
10 |
7 9
|
albid |
⊢ ( ∀ 𝑥 𝑧 = 𝑦 → ( ∀ 𝑥 ( 𝑥 = 𝑧 → 𝜑 ) ↔ ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ) ) |
11 |
6 10
|
syl |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ 𝑧 = 𝑦 ) → ( ∀ 𝑥 ( 𝑥 = 𝑧 → 𝜑 ) ↔ ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ) ) |
12 |
11
|
imbi2d |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ 𝑧 = 𝑦 ) → ( ( 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑧 → 𝜑 ) ) ↔ ( 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ) ) ) |
13 |
4 12
|
imbi12d |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ 𝑧 = 𝑦 ) → ( ( 𝑥 = 𝑧 → ( 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑧 → 𝜑 ) ) ) ↔ ( 𝑥 = 𝑦 → ( 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ) ) ) ) |
14 |
1 13
|
mpbii |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ 𝑧 = 𝑦 ) → ( 𝑥 = 𝑦 → ( 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ) ) ) |
15 |
14
|
ex |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝑧 = 𝑦 → ( 𝑥 = 𝑦 → ( 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ) ) ) ) |
16 |
15
|
exlimdv |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( ∃ 𝑧 𝑧 = 𝑦 → ( 𝑥 = 𝑦 → ( 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ) ) ) ) |
17 |
2 16
|
mpi |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝑥 = 𝑦 → ( 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ) ) ) |