Metamath Proof Explorer


Theorem ax2

Description: Standard propositional axiom derived from Lukasiewicz axioms. (Contributed by NM, 22-Dec-2002) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion ax2 ( ( 𝜑 → ( 𝜓𝜒 ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜒 ) ) )

Proof

Step Hyp Ref Expression
1 luklem7 ( ( 𝜑 → ( 𝜓𝜒 ) ) → ( 𝜓 → ( 𝜑𝜒 ) ) )
2 luklem8 ( ( 𝜓 → ( 𝜑𝜒 ) ) → ( ( 𝜑𝜓 ) → ( 𝜑 → ( 𝜑𝜒 ) ) ) )
3 luklem6 ( ( 𝜑 → ( 𝜑𝜒 ) ) → ( 𝜑𝜒 ) )
4 luklem8 ( ( ( 𝜑 → ( 𝜑𝜒 ) ) → ( 𝜑𝜒 ) ) → ( ( ( 𝜑𝜓 ) → ( 𝜑 → ( 𝜑𝜒 ) ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜒 ) ) ) )
5 3 4 ax-mp ( ( ( 𝜑𝜓 ) → ( 𝜑 → ( 𝜑𝜒 ) ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜒 ) ) )
6 2 5 luklem1 ( ( 𝜓 → ( 𝜑𝜒 ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜒 ) ) )
7 1 6 luklem1 ( ( 𝜑 → ( 𝜓𝜒 ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜒 ) ) )