Metamath Proof Explorer


Theorem ax5e

Description: A rephrasing of ax-5 using the existential quantifier. (Contributed by Wolf Lammen, 4-Dec-2017)

Ref Expression
Assertion ax5e ( ∃ 𝑥 𝜑𝜑 )

Proof

Step Hyp Ref Expression
1 ax-5 ( ¬ 𝜑 → ∀ 𝑥 ¬ 𝜑 )
2 eximal ( ( ∃ 𝑥 𝜑𝜑 ) ↔ ( ¬ 𝜑 → ∀ 𝑥 ¬ 𝜑 ) )
3 1 2 mpbir ( ∃ 𝑥 𝜑𝜑 )