| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpl2l |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑇 ∈ ( 0 [,] 1 ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐵 ‘ 𝑖 ) = ( ( ( 1 − 𝑇 ) · ( 𝐴 ‘ 𝑖 ) ) + ( 𝑇 · ( 𝐶 ‘ 𝑖 ) ) ) ) ) ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) → 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ) |
| 2 |
|
fveecn |
⊢ ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) → ( 𝐴 ‘ 𝑗 ) ∈ ℂ ) |
| 3 |
1 2
|
sylancom |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑇 ∈ ( 0 [,] 1 ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐵 ‘ 𝑖 ) = ( ( ( 1 − 𝑇 ) · ( 𝐴 ‘ 𝑖 ) ) + ( 𝑇 · ( 𝐶 ‘ 𝑖 ) ) ) ) ) ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) → ( 𝐴 ‘ 𝑗 ) ∈ ℂ ) |
| 4 |
|
simpl2r |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑇 ∈ ( 0 [,] 1 ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐵 ‘ 𝑖 ) = ( ( ( 1 − 𝑇 ) · ( 𝐴 ‘ 𝑖 ) ) + ( 𝑇 · ( 𝐶 ‘ 𝑖 ) ) ) ) ) ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) → 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) |
| 5 |
|
fveecn |
⊢ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) → ( 𝐶 ‘ 𝑗 ) ∈ ℂ ) |
| 6 |
4 5
|
sylancom |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑇 ∈ ( 0 [,] 1 ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐵 ‘ 𝑖 ) = ( ( ( 1 − 𝑇 ) · ( 𝐴 ‘ 𝑖 ) ) + ( 𝑇 · ( 𝐶 ‘ 𝑖 ) ) ) ) ) ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) → ( 𝐶 ‘ 𝑗 ) ∈ ℂ ) |
| 7 |
|
elicc01 |
⊢ ( 𝑇 ∈ ( 0 [,] 1 ) ↔ ( 𝑇 ∈ ℝ ∧ 0 ≤ 𝑇 ∧ 𝑇 ≤ 1 ) ) |
| 8 |
7
|
simp1bi |
⊢ ( 𝑇 ∈ ( 0 [,] 1 ) → 𝑇 ∈ ℝ ) |
| 9 |
8
|
adantr |
⊢ ( ( 𝑇 ∈ ( 0 [,] 1 ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐵 ‘ 𝑖 ) = ( ( ( 1 − 𝑇 ) · ( 𝐴 ‘ 𝑖 ) ) + ( 𝑇 · ( 𝐶 ‘ 𝑖 ) ) ) ) → 𝑇 ∈ ℝ ) |
| 10 |
9
|
3ad2ant3 |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑇 ∈ ( 0 [,] 1 ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐵 ‘ 𝑖 ) = ( ( ( 1 − 𝑇 ) · ( 𝐴 ‘ 𝑖 ) ) + ( 𝑇 · ( 𝐶 ‘ 𝑖 ) ) ) ) ) → 𝑇 ∈ ℝ ) |
| 11 |
10
|
recnd |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑇 ∈ ( 0 [,] 1 ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐵 ‘ 𝑖 ) = ( ( ( 1 − 𝑇 ) · ( 𝐴 ‘ 𝑖 ) ) + ( 𝑇 · ( 𝐶 ‘ 𝑖 ) ) ) ) ) → 𝑇 ∈ ℂ ) |
| 12 |
11
|
adantr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑇 ∈ ( 0 [,] 1 ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐵 ‘ 𝑖 ) = ( ( ( 1 − 𝑇 ) · ( 𝐴 ‘ 𝑖 ) ) + ( 𝑇 · ( 𝐶 ‘ 𝑖 ) ) ) ) ) ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) → 𝑇 ∈ ℂ ) |
| 13 |
|
fveq2 |
⊢ ( 𝑖 = 𝑗 → ( 𝐵 ‘ 𝑖 ) = ( 𝐵 ‘ 𝑗 ) ) |
| 14 |
|
fveq2 |
⊢ ( 𝑖 = 𝑗 → ( 𝐴 ‘ 𝑖 ) = ( 𝐴 ‘ 𝑗 ) ) |
| 15 |
14
|
oveq2d |
⊢ ( 𝑖 = 𝑗 → ( ( 1 − 𝑇 ) · ( 𝐴 ‘ 𝑖 ) ) = ( ( 1 − 𝑇 ) · ( 𝐴 ‘ 𝑗 ) ) ) |
| 16 |
|
fveq2 |
⊢ ( 𝑖 = 𝑗 → ( 𝐶 ‘ 𝑖 ) = ( 𝐶 ‘ 𝑗 ) ) |
| 17 |
16
|
oveq2d |
⊢ ( 𝑖 = 𝑗 → ( 𝑇 · ( 𝐶 ‘ 𝑖 ) ) = ( 𝑇 · ( 𝐶 ‘ 𝑗 ) ) ) |
| 18 |
15 17
|
oveq12d |
⊢ ( 𝑖 = 𝑗 → ( ( ( 1 − 𝑇 ) · ( 𝐴 ‘ 𝑖 ) ) + ( 𝑇 · ( 𝐶 ‘ 𝑖 ) ) ) = ( ( ( 1 − 𝑇 ) · ( 𝐴 ‘ 𝑗 ) ) + ( 𝑇 · ( 𝐶 ‘ 𝑗 ) ) ) ) |
| 19 |
13 18
|
eqeq12d |
⊢ ( 𝑖 = 𝑗 → ( ( 𝐵 ‘ 𝑖 ) = ( ( ( 1 − 𝑇 ) · ( 𝐴 ‘ 𝑖 ) ) + ( 𝑇 · ( 𝐶 ‘ 𝑖 ) ) ) ↔ ( 𝐵 ‘ 𝑗 ) = ( ( ( 1 − 𝑇 ) · ( 𝐴 ‘ 𝑗 ) ) + ( 𝑇 · ( 𝐶 ‘ 𝑗 ) ) ) ) ) |
| 20 |
19
|
rspccva |
⊢ ( ( ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐵 ‘ 𝑖 ) = ( ( ( 1 − 𝑇 ) · ( 𝐴 ‘ 𝑖 ) ) + ( 𝑇 · ( 𝐶 ‘ 𝑖 ) ) ) ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) → ( 𝐵 ‘ 𝑗 ) = ( ( ( 1 − 𝑇 ) · ( 𝐴 ‘ 𝑗 ) ) + ( 𝑇 · ( 𝐶 ‘ 𝑗 ) ) ) ) |
| 21 |
20
|
adantll |
⊢ ( ( ( 𝑇 ∈ ( 0 [,] 1 ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐵 ‘ 𝑖 ) = ( ( ( 1 − 𝑇 ) · ( 𝐴 ‘ 𝑖 ) ) + ( 𝑇 · ( 𝐶 ‘ 𝑖 ) ) ) ) ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) → ( 𝐵 ‘ 𝑗 ) = ( ( ( 1 − 𝑇 ) · ( 𝐴 ‘ 𝑗 ) ) + ( 𝑇 · ( 𝐶 ‘ 𝑗 ) ) ) ) |
| 22 |
21
|
3ad2antl3 |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑇 ∈ ( 0 [,] 1 ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐵 ‘ 𝑖 ) = ( ( ( 1 − 𝑇 ) · ( 𝐴 ‘ 𝑖 ) ) + ( 𝑇 · ( 𝐶 ‘ 𝑖 ) ) ) ) ) ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) → ( 𝐵 ‘ 𝑗 ) = ( ( ( 1 − 𝑇 ) · ( 𝐴 ‘ 𝑗 ) ) + ( 𝑇 · ( 𝐶 ‘ 𝑗 ) ) ) ) |
| 23 |
|
oveq2 |
⊢ ( ( 𝐵 ‘ 𝑗 ) = ( ( ( 1 − 𝑇 ) · ( 𝐴 ‘ 𝑗 ) ) + ( 𝑇 · ( 𝐶 ‘ 𝑗 ) ) ) → ( ( 𝐴 ‘ 𝑗 ) − ( 𝐵 ‘ 𝑗 ) ) = ( ( 𝐴 ‘ 𝑗 ) − ( ( ( 1 − 𝑇 ) · ( 𝐴 ‘ 𝑗 ) ) + ( 𝑇 · ( 𝐶 ‘ 𝑗 ) ) ) ) ) |
| 24 |
23
|
oveq1d |
⊢ ( ( 𝐵 ‘ 𝑗 ) = ( ( ( 1 − 𝑇 ) · ( 𝐴 ‘ 𝑗 ) ) + ( 𝑇 · ( 𝐶 ‘ 𝑗 ) ) ) → ( ( ( 𝐴 ‘ 𝑗 ) − ( 𝐵 ‘ 𝑗 ) ) ↑ 2 ) = ( ( ( 𝐴 ‘ 𝑗 ) − ( ( ( 1 − 𝑇 ) · ( 𝐴 ‘ 𝑗 ) ) + ( 𝑇 · ( 𝐶 ‘ 𝑗 ) ) ) ) ↑ 2 ) ) |
| 25 |
|
subdi |
⊢ ( ( 𝑇 ∈ ℂ ∧ ( 𝐴 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑗 ) ∈ ℂ ) → ( 𝑇 · ( ( 𝐴 ‘ 𝑗 ) − ( 𝐶 ‘ 𝑗 ) ) ) = ( ( 𝑇 · ( 𝐴 ‘ 𝑗 ) ) − ( 𝑇 · ( 𝐶 ‘ 𝑗 ) ) ) ) |
| 26 |
25
|
3coml |
⊢ ( ( ( 𝐴 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑗 ) ∈ ℂ ∧ 𝑇 ∈ ℂ ) → ( 𝑇 · ( ( 𝐴 ‘ 𝑗 ) − ( 𝐶 ‘ 𝑗 ) ) ) = ( ( 𝑇 · ( 𝐴 ‘ 𝑗 ) ) − ( 𝑇 · ( 𝐶 ‘ 𝑗 ) ) ) ) |
| 27 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 28 |
|
subcl |
⊢ ( ( 1 ∈ ℂ ∧ 𝑇 ∈ ℂ ) → ( 1 − 𝑇 ) ∈ ℂ ) |
| 29 |
27 28
|
mpan |
⊢ ( 𝑇 ∈ ℂ → ( 1 − 𝑇 ) ∈ ℂ ) |
| 30 |
29
|
adantl |
⊢ ( ( ( 𝐴 ‘ 𝑗 ) ∈ ℂ ∧ 𝑇 ∈ ℂ ) → ( 1 − 𝑇 ) ∈ ℂ ) |
| 31 |
|
simpl |
⊢ ( ( ( 𝐴 ‘ 𝑗 ) ∈ ℂ ∧ 𝑇 ∈ ℂ ) → ( 𝐴 ‘ 𝑗 ) ∈ ℂ ) |
| 32 |
|
subdir |
⊢ ( ( 1 ∈ ℂ ∧ ( 1 − 𝑇 ) ∈ ℂ ∧ ( 𝐴 ‘ 𝑗 ) ∈ ℂ ) → ( ( 1 − ( 1 − 𝑇 ) ) · ( 𝐴 ‘ 𝑗 ) ) = ( ( 1 · ( 𝐴 ‘ 𝑗 ) ) − ( ( 1 − 𝑇 ) · ( 𝐴 ‘ 𝑗 ) ) ) ) |
| 33 |
27 30 31 32
|
mp3an2i |
⊢ ( ( ( 𝐴 ‘ 𝑗 ) ∈ ℂ ∧ 𝑇 ∈ ℂ ) → ( ( 1 − ( 1 − 𝑇 ) ) · ( 𝐴 ‘ 𝑗 ) ) = ( ( 1 · ( 𝐴 ‘ 𝑗 ) ) − ( ( 1 − 𝑇 ) · ( 𝐴 ‘ 𝑗 ) ) ) ) |
| 34 |
|
nncan |
⊢ ( ( 1 ∈ ℂ ∧ 𝑇 ∈ ℂ ) → ( 1 − ( 1 − 𝑇 ) ) = 𝑇 ) |
| 35 |
27 34
|
mpan |
⊢ ( 𝑇 ∈ ℂ → ( 1 − ( 1 − 𝑇 ) ) = 𝑇 ) |
| 36 |
35
|
oveq1d |
⊢ ( 𝑇 ∈ ℂ → ( ( 1 − ( 1 − 𝑇 ) ) · ( 𝐴 ‘ 𝑗 ) ) = ( 𝑇 · ( 𝐴 ‘ 𝑗 ) ) ) |
| 37 |
36
|
adantl |
⊢ ( ( ( 𝐴 ‘ 𝑗 ) ∈ ℂ ∧ 𝑇 ∈ ℂ ) → ( ( 1 − ( 1 − 𝑇 ) ) · ( 𝐴 ‘ 𝑗 ) ) = ( 𝑇 · ( 𝐴 ‘ 𝑗 ) ) ) |
| 38 |
|
mullid |
⊢ ( ( 𝐴 ‘ 𝑗 ) ∈ ℂ → ( 1 · ( 𝐴 ‘ 𝑗 ) ) = ( 𝐴 ‘ 𝑗 ) ) |
| 39 |
38
|
oveq1d |
⊢ ( ( 𝐴 ‘ 𝑗 ) ∈ ℂ → ( ( 1 · ( 𝐴 ‘ 𝑗 ) ) − ( ( 1 − 𝑇 ) · ( 𝐴 ‘ 𝑗 ) ) ) = ( ( 𝐴 ‘ 𝑗 ) − ( ( 1 − 𝑇 ) · ( 𝐴 ‘ 𝑗 ) ) ) ) |
| 40 |
39
|
adantr |
⊢ ( ( ( 𝐴 ‘ 𝑗 ) ∈ ℂ ∧ 𝑇 ∈ ℂ ) → ( ( 1 · ( 𝐴 ‘ 𝑗 ) ) − ( ( 1 − 𝑇 ) · ( 𝐴 ‘ 𝑗 ) ) ) = ( ( 𝐴 ‘ 𝑗 ) − ( ( 1 − 𝑇 ) · ( 𝐴 ‘ 𝑗 ) ) ) ) |
| 41 |
33 37 40
|
3eqtr3rd |
⊢ ( ( ( 𝐴 ‘ 𝑗 ) ∈ ℂ ∧ 𝑇 ∈ ℂ ) → ( ( 𝐴 ‘ 𝑗 ) − ( ( 1 − 𝑇 ) · ( 𝐴 ‘ 𝑗 ) ) ) = ( 𝑇 · ( 𝐴 ‘ 𝑗 ) ) ) |
| 42 |
41
|
oveq1d |
⊢ ( ( ( 𝐴 ‘ 𝑗 ) ∈ ℂ ∧ 𝑇 ∈ ℂ ) → ( ( ( 𝐴 ‘ 𝑗 ) − ( ( 1 − 𝑇 ) · ( 𝐴 ‘ 𝑗 ) ) ) − ( 𝑇 · ( 𝐶 ‘ 𝑗 ) ) ) = ( ( 𝑇 · ( 𝐴 ‘ 𝑗 ) ) − ( 𝑇 · ( 𝐶 ‘ 𝑗 ) ) ) ) |
| 43 |
42
|
3adant2 |
⊢ ( ( ( 𝐴 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑗 ) ∈ ℂ ∧ 𝑇 ∈ ℂ ) → ( ( ( 𝐴 ‘ 𝑗 ) − ( ( 1 − 𝑇 ) · ( 𝐴 ‘ 𝑗 ) ) ) − ( 𝑇 · ( 𝐶 ‘ 𝑗 ) ) ) = ( ( 𝑇 · ( 𝐴 ‘ 𝑗 ) ) − ( 𝑇 · ( 𝐶 ‘ 𝑗 ) ) ) ) |
| 44 |
|
simp1 |
⊢ ( ( ( 𝐴 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑗 ) ∈ ℂ ∧ 𝑇 ∈ ℂ ) → ( 𝐴 ‘ 𝑗 ) ∈ ℂ ) |
| 45 |
|
mulcl |
⊢ ( ( ( 1 − 𝑇 ) ∈ ℂ ∧ ( 𝐴 ‘ 𝑗 ) ∈ ℂ ) → ( ( 1 − 𝑇 ) · ( 𝐴 ‘ 𝑗 ) ) ∈ ℂ ) |
| 46 |
29 45
|
sylan |
⊢ ( ( 𝑇 ∈ ℂ ∧ ( 𝐴 ‘ 𝑗 ) ∈ ℂ ) → ( ( 1 − 𝑇 ) · ( 𝐴 ‘ 𝑗 ) ) ∈ ℂ ) |
| 47 |
46
|
ancoms |
⊢ ( ( ( 𝐴 ‘ 𝑗 ) ∈ ℂ ∧ 𝑇 ∈ ℂ ) → ( ( 1 − 𝑇 ) · ( 𝐴 ‘ 𝑗 ) ) ∈ ℂ ) |
| 48 |
47
|
3adant2 |
⊢ ( ( ( 𝐴 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑗 ) ∈ ℂ ∧ 𝑇 ∈ ℂ ) → ( ( 1 − 𝑇 ) · ( 𝐴 ‘ 𝑗 ) ) ∈ ℂ ) |
| 49 |
|
mulcl |
⊢ ( ( 𝑇 ∈ ℂ ∧ ( 𝐶 ‘ 𝑗 ) ∈ ℂ ) → ( 𝑇 · ( 𝐶 ‘ 𝑗 ) ) ∈ ℂ ) |
| 50 |
49
|
ancoms |
⊢ ( ( ( 𝐶 ‘ 𝑗 ) ∈ ℂ ∧ 𝑇 ∈ ℂ ) → ( 𝑇 · ( 𝐶 ‘ 𝑗 ) ) ∈ ℂ ) |
| 51 |
50
|
3adant1 |
⊢ ( ( ( 𝐴 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑗 ) ∈ ℂ ∧ 𝑇 ∈ ℂ ) → ( 𝑇 · ( 𝐶 ‘ 𝑗 ) ) ∈ ℂ ) |
| 52 |
44 48 51
|
subsub4d |
⊢ ( ( ( 𝐴 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑗 ) ∈ ℂ ∧ 𝑇 ∈ ℂ ) → ( ( ( 𝐴 ‘ 𝑗 ) − ( ( 1 − 𝑇 ) · ( 𝐴 ‘ 𝑗 ) ) ) − ( 𝑇 · ( 𝐶 ‘ 𝑗 ) ) ) = ( ( 𝐴 ‘ 𝑗 ) − ( ( ( 1 − 𝑇 ) · ( 𝐴 ‘ 𝑗 ) ) + ( 𝑇 · ( 𝐶 ‘ 𝑗 ) ) ) ) ) |
| 53 |
26 43 52
|
3eqtr2rd |
⊢ ( ( ( 𝐴 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑗 ) ∈ ℂ ∧ 𝑇 ∈ ℂ ) → ( ( 𝐴 ‘ 𝑗 ) − ( ( ( 1 − 𝑇 ) · ( 𝐴 ‘ 𝑗 ) ) + ( 𝑇 · ( 𝐶 ‘ 𝑗 ) ) ) ) = ( 𝑇 · ( ( 𝐴 ‘ 𝑗 ) − ( 𝐶 ‘ 𝑗 ) ) ) ) |
| 54 |
53
|
oveq1d |
⊢ ( ( ( 𝐴 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑗 ) ∈ ℂ ∧ 𝑇 ∈ ℂ ) → ( ( ( 𝐴 ‘ 𝑗 ) − ( ( ( 1 − 𝑇 ) · ( 𝐴 ‘ 𝑗 ) ) + ( 𝑇 · ( 𝐶 ‘ 𝑗 ) ) ) ) ↑ 2 ) = ( ( 𝑇 · ( ( 𝐴 ‘ 𝑗 ) − ( 𝐶 ‘ 𝑗 ) ) ) ↑ 2 ) ) |
| 55 |
|
simp3 |
⊢ ( ( ( 𝐴 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑗 ) ∈ ℂ ∧ 𝑇 ∈ ℂ ) → 𝑇 ∈ ℂ ) |
| 56 |
|
subcl |
⊢ ( ( ( 𝐴 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑗 ) ∈ ℂ ) → ( ( 𝐴 ‘ 𝑗 ) − ( 𝐶 ‘ 𝑗 ) ) ∈ ℂ ) |
| 57 |
56
|
3adant3 |
⊢ ( ( ( 𝐴 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑗 ) ∈ ℂ ∧ 𝑇 ∈ ℂ ) → ( ( 𝐴 ‘ 𝑗 ) − ( 𝐶 ‘ 𝑗 ) ) ∈ ℂ ) |
| 58 |
55 57
|
sqmuld |
⊢ ( ( ( 𝐴 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑗 ) ∈ ℂ ∧ 𝑇 ∈ ℂ ) → ( ( 𝑇 · ( ( 𝐴 ‘ 𝑗 ) − ( 𝐶 ‘ 𝑗 ) ) ) ↑ 2 ) = ( ( 𝑇 ↑ 2 ) · ( ( ( 𝐴 ‘ 𝑗 ) − ( 𝐶 ‘ 𝑗 ) ) ↑ 2 ) ) ) |
| 59 |
54 58
|
eqtrd |
⊢ ( ( ( 𝐴 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑗 ) ∈ ℂ ∧ 𝑇 ∈ ℂ ) → ( ( ( 𝐴 ‘ 𝑗 ) − ( ( ( 1 − 𝑇 ) · ( 𝐴 ‘ 𝑗 ) ) + ( 𝑇 · ( 𝐶 ‘ 𝑗 ) ) ) ) ↑ 2 ) = ( ( 𝑇 ↑ 2 ) · ( ( ( 𝐴 ‘ 𝑗 ) − ( 𝐶 ‘ 𝑗 ) ) ↑ 2 ) ) ) |
| 60 |
24 59
|
sylan9eqr |
⊢ ( ( ( ( 𝐴 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑗 ) ∈ ℂ ∧ 𝑇 ∈ ℂ ) ∧ ( 𝐵 ‘ 𝑗 ) = ( ( ( 1 − 𝑇 ) · ( 𝐴 ‘ 𝑗 ) ) + ( 𝑇 · ( 𝐶 ‘ 𝑗 ) ) ) ) → ( ( ( 𝐴 ‘ 𝑗 ) − ( 𝐵 ‘ 𝑗 ) ) ↑ 2 ) = ( ( 𝑇 ↑ 2 ) · ( ( ( 𝐴 ‘ 𝑗 ) − ( 𝐶 ‘ 𝑗 ) ) ↑ 2 ) ) ) |
| 61 |
3 6 12 22 60
|
syl31anc |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑇 ∈ ( 0 [,] 1 ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐵 ‘ 𝑖 ) = ( ( ( 1 − 𝑇 ) · ( 𝐴 ‘ 𝑖 ) ) + ( 𝑇 · ( 𝐶 ‘ 𝑖 ) ) ) ) ) ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) → ( ( ( 𝐴 ‘ 𝑗 ) − ( 𝐵 ‘ 𝑗 ) ) ↑ 2 ) = ( ( 𝑇 ↑ 2 ) · ( ( ( 𝐴 ‘ 𝑗 ) − ( 𝐶 ‘ 𝑗 ) ) ↑ 2 ) ) ) |
| 62 |
61
|
sumeq2dv |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑇 ∈ ( 0 [,] 1 ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐵 ‘ 𝑖 ) = ( ( ( 1 − 𝑇 ) · ( 𝐴 ‘ 𝑖 ) ) + ( 𝑇 · ( 𝐶 ‘ 𝑖 ) ) ) ) ) → Σ 𝑗 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐴 ‘ 𝑗 ) − ( 𝐵 ‘ 𝑗 ) ) ↑ 2 ) = Σ 𝑗 ∈ ( 1 ... 𝑁 ) ( ( 𝑇 ↑ 2 ) · ( ( ( 𝐴 ‘ 𝑗 ) − ( 𝐶 ‘ 𝑗 ) ) ↑ 2 ) ) ) |
| 63 |
|
fzfid |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑇 ∈ ( 0 [,] 1 ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐵 ‘ 𝑖 ) = ( ( ( 1 − 𝑇 ) · ( 𝐴 ‘ 𝑖 ) ) + ( 𝑇 · ( 𝐶 ‘ 𝑖 ) ) ) ) ) → ( 1 ... 𝑁 ) ∈ Fin ) |
| 64 |
8
|
resqcld |
⊢ ( 𝑇 ∈ ( 0 [,] 1 ) → ( 𝑇 ↑ 2 ) ∈ ℝ ) |
| 65 |
64
|
recnd |
⊢ ( 𝑇 ∈ ( 0 [,] 1 ) → ( 𝑇 ↑ 2 ) ∈ ℂ ) |
| 66 |
65
|
adantr |
⊢ ( ( 𝑇 ∈ ( 0 [,] 1 ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐵 ‘ 𝑖 ) = ( ( ( 1 − 𝑇 ) · ( 𝐴 ‘ 𝑖 ) ) + ( 𝑇 · ( 𝐶 ‘ 𝑖 ) ) ) ) → ( 𝑇 ↑ 2 ) ∈ ℂ ) |
| 67 |
66
|
3ad2ant3 |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑇 ∈ ( 0 [,] 1 ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐵 ‘ 𝑖 ) = ( ( ( 1 − 𝑇 ) · ( 𝐴 ‘ 𝑖 ) ) + ( 𝑇 · ( 𝐶 ‘ 𝑖 ) ) ) ) ) → ( 𝑇 ↑ 2 ) ∈ ℂ ) |
| 68 |
2
|
3adant1 |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) → ( 𝐴 ‘ 𝑗 ) ∈ ℂ ) |
| 69 |
68
|
3adant2r |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) → ( 𝐴 ‘ 𝑗 ) ∈ ℂ ) |
| 70 |
5
|
3adant1 |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) → ( 𝐶 ‘ 𝑗 ) ∈ ℂ ) |
| 71 |
70
|
3adant2l |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) → ( 𝐶 ‘ 𝑗 ) ∈ ℂ ) |
| 72 |
69 71
|
subcld |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝐴 ‘ 𝑗 ) − ( 𝐶 ‘ 𝑗 ) ) ∈ ℂ ) |
| 73 |
72
|
sqcld |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) → ( ( ( 𝐴 ‘ 𝑗 ) − ( 𝐶 ‘ 𝑗 ) ) ↑ 2 ) ∈ ℂ ) |
| 74 |
73
|
3expa |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) → ( ( ( 𝐴 ‘ 𝑗 ) − ( 𝐶 ‘ 𝑗 ) ) ↑ 2 ) ∈ ℂ ) |
| 75 |
74
|
3adantl3 |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑇 ∈ ( 0 [,] 1 ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐵 ‘ 𝑖 ) = ( ( ( 1 − 𝑇 ) · ( 𝐴 ‘ 𝑖 ) ) + ( 𝑇 · ( 𝐶 ‘ 𝑖 ) ) ) ) ) ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) → ( ( ( 𝐴 ‘ 𝑗 ) − ( 𝐶 ‘ 𝑗 ) ) ↑ 2 ) ∈ ℂ ) |
| 76 |
63 67 75
|
fsummulc2 |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑇 ∈ ( 0 [,] 1 ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐵 ‘ 𝑖 ) = ( ( ( 1 − 𝑇 ) · ( 𝐴 ‘ 𝑖 ) ) + ( 𝑇 · ( 𝐶 ‘ 𝑖 ) ) ) ) ) → ( ( 𝑇 ↑ 2 ) · Σ 𝑗 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐴 ‘ 𝑗 ) − ( 𝐶 ‘ 𝑗 ) ) ↑ 2 ) ) = Σ 𝑗 ∈ ( 1 ... 𝑁 ) ( ( 𝑇 ↑ 2 ) · ( ( ( 𝐴 ‘ 𝑗 ) − ( 𝐶 ‘ 𝑗 ) ) ↑ 2 ) ) ) |
| 77 |
62 76
|
eqtr4d |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑇 ∈ ( 0 [,] 1 ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐵 ‘ 𝑖 ) = ( ( ( 1 − 𝑇 ) · ( 𝐴 ‘ 𝑖 ) ) + ( 𝑇 · ( 𝐶 ‘ 𝑖 ) ) ) ) ) → Σ 𝑗 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐴 ‘ 𝑗 ) − ( 𝐵 ‘ 𝑗 ) ) ↑ 2 ) = ( ( 𝑇 ↑ 2 ) · Σ 𝑗 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐴 ‘ 𝑗 ) − ( 𝐶 ‘ 𝑗 ) ) ↑ 2 ) ) ) |