Step |
Hyp |
Ref |
Expression |
1 |
|
ax6ev |
⊢ ∃ 𝑥 𝑥 = 𝑢 |
2 |
|
hbae |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ∀ 𝑥 ∀ 𝑥 𝑥 = 𝑦 ) |
3 |
|
ax7 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 = 𝑢 → 𝑦 = 𝑢 ) ) |
4 |
3
|
sps |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( 𝑥 = 𝑢 → 𝑦 = 𝑢 ) ) |
5 |
4
|
ancld |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( 𝑥 = 𝑢 → ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑢 ) ) ) |
6 |
2 5
|
eximdh |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( ∃ 𝑥 𝑥 = 𝑢 → ∃ 𝑥 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑢 ) ) ) |
7 |
1 6
|
mpi |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ∃ 𝑥 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑢 ) ) |
8 |
7
|
axc4i |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ∀ 𝑥 ∃ 𝑥 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑢 ) ) |
9 |
|
axc11 |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( ∀ 𝑥 ∃ 𝑥 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑢 ) → ∀ 𝑦 ∃ 𝑥 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑢 ) ) ) |
10 |
8 9
|
mpd |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ∀ 𝑦 ∃ 𝑥 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑢 ) ) |
11 |
|
19.2 |
⊢ ( ∀ 𝑦 ∃ 𝑥 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑢 ) → ∃ 𝑦 ∃ 𝑥 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑢 ) ) |
12 |
10 11
|
syl |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ∃ 𝑦 ∃ 𝑥 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑢 ) ) |
13 |
|
excomim |
⊢ ( ∃ 𝑦 ∃ 𝑥 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑢 ) → ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑢 ) ) |
14 |
12 13
|
syl |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑢 ) ) |
15 |
|
equtrr |
⊢ ( 𝑢 = 𝑣 → ( 𝑦 = 𝑢 → 𝑦 = 𝑣 ) ) |
16 |
15
|
anim2d |
⊢ ( 𝑢 = 𝑣 → ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑢 ) → ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ) ) |
17 |
16
|
2eximdv |
⊢ ( 𝑢 = 𝑣 → ( ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑢 ) → ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ) ) |
18 |
14 17
|
syl5com |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( 𝑢 = 𝑣 → ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ) ) |