Step |
Hyp |
Ref |
Expression |
1 |
|
vex |
⊢ 𝑢 ∈ V |
2 |
|
ax6e |
⊢ ∃ 𝑦 𝑦 = 𝑣 |
3 |
1 2
|
pm3.2i |
⊢ ( 𝑢 ∈ V ∧ ∃ 𝑦 𝑦 = 𝑣 ) |
4 |
|
19.42v |
⊢ ( ∃ 𝑦 ( 𝑢 ∈ V ∧ 𝑦 = 𝑣 ) ↔ ( 𝑢 ∈ V ∧ ∃ 𝑦 𝑦 = 𝑣 ) ) |
5 |
4
|
biimpri |
⊢ ( ( 𝑢 ∈ V ∧ ∃ 𝑦 𝑦 = 𝑣 ) → ∃ 𝑦 ( 𝑢 ∈ V ∧ 𝑦 = 𝑣 ) ) |
6 |
3 5
|
ax-mp |
⊢ ∃ 𝑦 ( 𝑢 ∈ V ∧ 𝑦 = 𝑣 ) |
7 |
|
isset |
⊢ ( 𝑢 ∈ V ↔ ∃ 𝑥 𝑥 = 𝑢 ) |
8 |
7
|
anbi1i |
⊢ ( ( 𝑢 ∈ V ∧ 𝑦 = 𝑣 ) ↔ ( ∃ 𝑥 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ) |
9 |
8
|
exbii |
⊢ ( ∃ 𝑦 ( 𝑢 ∈ V ∧ 𝑦 = 𝑣 ) ↔ ∃ 𝑦 ( ∃ 𝑥 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ) |
10 |
6 9
|
mpbi |
⊢ ∃ 𝑦 ( ∃ 𝑥 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) |
11 |
|
id |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ¬ ∀ 𝑥 𝑥 = 𝑦 ) |
12 |
|
hbnae |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ∀ 𝑦 ¬ ∀ 𝑥 𝑥 = 𝑦 ) |
13 |
|
hbn1 |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ∀ 𝑥 ¬ ∀ 𝑥 𝑥 = 𝑦 ) |
14 |
|
ax-5 |
⊢ ( 𝑧 = 𝑣 → ∀ 𝑥 𝑧 = 𝑣 ) |
15 |
|
ax-5 |
⊢ ( 𝑦 = 𝑣 → ∀ 𝑧 𝑦 = 𝑣 ) |
16 |
|
id |
⊢ ( 𝑧 = 𝑦 → 𝑧 = 𝑦 ) |
17 |
|
equequ1 |
⊢ ( 𝑧 = 𝑦 → ( 𝑧 = 𝑣 ↔ 𝑦 = 𝑣 ) ) |
18 |
16 17
|
syl |
⊢ ( 𝑧 = 𝑦 → ( 𝑧 = 𝑣 ↔ 𝑦 = 𝑣 ) ) |
19 |
18
|
idiALT |
⊢ ( 𝑧 = 𝑦 → ( 𝑧 = 𝑣 ↔ 𝑦 = 𝑣 ) ) |
20 |
14 15 19
|
dvelimh |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝑦 = 𝑣 → ∀ 𝑥 𝑦 = 𝑣 ) ) |
21 |
11 20
|
syl |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝑦 = 𝑣 → ∀ 𝑥 𝑦 = 𝑣 ) ) |
22 |
21
|
idiALT |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝑦 = 𝑣 → ∀ 𝑥 𝑦 = 𝑣 ) ) |
23 |
22
|
alimi |
⊢ ( ∀ 𝑥 ¬ ∀ 𝑥 𝑥 = 𝑦 → ∀ 𝑥 ( 𝑦 = 𝑣 → ∀ 𝑥 𝑦 = 𝑣 ) ) |
24 |
13 23
|
syl |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ∀ 𝑥 ( 𝑦 = 𝑣 → ∀ 𝑥 𝑦 = 𝑣 ) ) |
25 |
11 24
|
syl |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ∀ 𝑥 ( 𝑦 = 𝑣 → ∀ 𝑥 𝑦 = 𝑣 ) ) |
26 |
|
19.41rg |
⊢ ( ∀ 𝑥 ( 𝑦 = 𝑣 → ∀ 𝑥 𝑦 = 𝑣 ) → ( ( ∃ 𝑥 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ∃ 𝑥 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ) ) |
27 |
25 26
|
syl |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( ( ∃ 𝑥 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ∃ 𝑥 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ) ) |
28 |
27
|
idiALT |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( ( ∃ 𝑥 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ∃ 𝑥 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ) ) |
29 |
28
|
alimi |
⊢ ( ∀ 𝑦 ¬ ∀ 𝑥 𝑥 = 𝑦 → ∀ 𝑦 ( ( ∃ 𝑥 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ∃ 𝑥 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ) ) |
30 |
12 29
|
syl |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ∀ 𝑦 ( ( ∃ 𝑥 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ∃ 𝑥 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ) ) |
31 |
11 30
|
syl |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ∀ 𝑦 ( ( ∃ 𝑥 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ∃ 𝑥 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ) ) |
32 |
|
exim |
⊢ ( ∀ 𝑦 ( ( ∃ 𝑥 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ∃ 𝑥 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ) → ( ∃ 𝑦 ( ∃ 𝑥 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ∃ 𝑦 ∃ 𝑥 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ) ) |
33 |
31 32
|
syl |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( ∃ 𝑦 ( ∃ 𝑥 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ∃ 𝑦 ∃ 𝑥 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ) ) |
34 |
|
pm2.27 |
⊢ ( ∃ 𝑦 ( ∃ 𝑥 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ( ( ∃ 𝑦 ( ∃ 𝑥 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ∃ 𝑦 ∃ 𝑥 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ) → ∃ 𝑦 ∃ 𝑥 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ) ) |
35 |
10 33 34
|
mpsyl |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ∃ 𝑦 ∃ 𝑥 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ) |
36 |
|
excomim |
⊢ ( ∃ 𝑦 ∃ 𝑥 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ) |
37 |
35 36
|
syl |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ) |
38 |
37
|
idiALT |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ) |