Step |
Hyp |
Ref |
Expression |
1 |
|
ax-sep |
⊢ ∃ 𝑥 ∀ 𝑧 ( 𝑧 ∈ 𝑥 ↔ ( 𝑧 ∈ 𝑦 ∧ ( 𝑧 = 𝑧 → 𝑧 = 𝑧 ) ) ) |
2 |
|
id |
⊢ ( 𝑧 = 𝑧 → 𝑧 = 𝑧 ) |
3 |
2
|
biantru |
⊢ ( 𝑧 ∈ 𝑦 ↔ ( 𝑧 ∈ 𝑦 ∧ ( 𝑧 = 𝑧 → 𝑧 = 𝑧 ) ) ) |
4 |
3
|
bibi2i |
⊢ ( ( 𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦 ) ↔ ( 𝑧 ∈ 𝑥 ↔ ( 𝑧 ∈ 𝑦 ∧ ( 𝑧 = 𝑧 → 𝑧 = 𝑧 ) ) ) ) |
5 |
4
|
biimpri |
⊢ ( ( 𝑧 ∈ 𝑥 ↔ ( 𝑧 ∈ 𝑦 ∧ ( 𝑧 = 𝑧 → 𝑧 = 𝑧 ) ) ) → ( 𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦 ) ) |
6 |
5
|
alimi |
⊢ ( ∀ 𝑧 ( 𝑧 ∈ 𝑥 ↔ ( 𝑧 ∈ 𝑦 ∧ ( 𝑧 = 𝑧 → 𝑧 = 𝑧 ) ) ) → ∀ 𝑧 ( 𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦 ) ) |
7 |
|
ax-ext |
⊢ ( ∀ 𝑧 ( 𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦 ) → 𝑥 = 𝑦 ) |
8 |
6 7
|
syl |
⊢ ( ∀ 𝑧 ( 𝑧 ∈ 𝑥 ↔ ( 𝑧 ∈ 𝑦 ∧ ( 𝑧 = 𝑧 → 𝑧 = 𝑧 ) ) ) → 𝑥 = 𝑦 ) |
9 |
8
|
eximi |
⊢ ( ∃ 𝑥 ∀ 𝑧 ( 𝑧 ∈ 𝑥 ↔ ( 𝑧 ∈ 𝑦 ∧ ( 𝑧 = 𝑧 → 𝑧 = 𝑧 ) ) ) → ∃ 𝑥 𝑥 = 𝑦 ) |
10 |
1 9
|
ax-mp |
⊢ ∃ 𝑥 𝑥 = 𝑦 |
11 |
|
df-ex |
⊢ ( ∃ 𝑥 𝑥 = 𝑦 ↔ ¬ ∀ 𝑥 ¬ 𝑥 = 𝑦 ) |
12 |
10 11
|
mpbi |
⊢ ¬ ∀ 𝑥 ¬ 𝑥 = 𝑦 |