| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dfcleq |
⊢ ( 𝑥 = 𝑦 ↔ ∀ 𝑡 ( 𝑡 ∈ 𝑥 ↔ 𝑡 ∈ 𝑦 ) ) |
| 2 |
1
|
biimpi |
⊢ ( 𝑥 = 𝑦 → ∀ 𝑡 ( 𝑡 ∈ 𝑥 ↔ 𝑡 ∈ 𝑦 ) ) |
| 3 |
|
biimp |
⊢ ( ( 𝑡 ∈ 𝑥 ↔ 𝑡 ∈ 𝑦 ) → ( 𝑡 ∈ 𝑥 → 𝑡 ∈ 𝑦 ) ) |
| 4 |
2 3
|
sylg |
⊢ ( 𝑥 = 𝑦 → ∀ 𝑡 ( 𝑡 ∈ 𝑥 → 𝑡 ∈ 𝑦 ) ) |
| 5 |
|
ax8 |
⊢ ( 𝑧 = 𝑡 → ( 𝑧 ∈ 𝑥 → 𝑡 ∈ 𝑥 ) ) |
| 6 |
5
|
equcoms |
⊢ ( 𝑡 = 𝑧 → ( 𝑧 ∈ 𝑥 → 𝑡 ∈ 𝑥 ) ) |
| 7 |
|
ax8 |
⊢ ( 𝑡 = 𝑧 → ( 𝑡 ∈ 𝑦 → 𝑧 ∈ 𝑦 ) ) |
| 8 |
6 7
|
imim12d |
⊢ ( 𝑡 = 𝑧 → ( ( 𝑡 ∈ 𝑥 → 𝑡 ∈ 𝑦 ) → ( 𝑧 ∈ 𝑥 → 𝑧 ∈ 𝑦 ) ) ) |
| 9 |
8
|
spimvw |
⊢ ( ∀ 𝑡 ( 𝑡 ∈ 𝑥 → 𝑡 ∈ 𝑦 ) → ( 𝑧 ∈ 𝑥 → 𝑧 ∈ 𝑦 ) ) |
| 10 |
4 9
|
syl |
⊢ ( 𝑥 = 𝑦 → ( 𝑧 ∈ 𝑥 → 𝑧 ∈ 𝑦 ) ) |