Metamath Proof Explorer


Theorem axac

Description: Derive ax-ac from ax-ac2 . Note that ax-reg is used by the proof. (Contributed by NM, 19-Dec-2016) (Proof modification is discouraged.)

Ref Expression
Assertion axac 𝑦𝑧𝑤 ( ( 𝑧𝑤𝑤𝑥 ) → ∃ 𝑣𝑢 ( ∃ 𝑡 ( ( 𝑢𝑤𝑤𝑡 ) ∧ ( 𝑢𝑡𝑡𝑦 ) ) ↔ 𝑢 = 𝑣 ) )

Proof

Step Hyp Ref Expression
1 axac3 CHOICE
2 dfac0 ( CHOICE ↔ ∀ 𝑥𝑦𝑧𝑤 ( ( 𝑧𝑤𝑤𝑥 ) → ∃ 𝑣𝑢 ( ∃ 𝑡 ( ( 𝑢𝑤𝑤𝑡 ) ∧ ( 𝑢𝑡𝑡𝑦 ) ) ↔ 𝑢 = 𝑣 ) ) )
3 1 2 mpbi 𝑥𝑦𝑧𝑤 ( ( 𝑧𝑤𝑤𝑥 ) → ∃ 𝑣𝑢 ( ∃ 𝑡 ( ( 𝑢𝑤𝑤𝑡 ) ∧ ( 𝑢𝑡𝑡𝑦 ) ) ↔ 𝑢 = 𝑣 ) )
4 3 spi 𝑦𝑧𝑤 ( ( 𝑧𝑤𝑤𝑥 ) → ∃ 𝑣𝑢 ( ∃ 𝑡 ( ( 𝑢𝑤𝑤𝑡 ) ∧ ( 𝑢𝑡𝑡𝑦 ) ) ↔ 𝑢 = 𝑣 ) )