Description: Derive ax-ac from ax-ac2 . Note that ax-reg is used by the proof. (Contributed by NM, 19-Dec-2016) (Proof modification is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | axac | ⊢ ∃ 𝑦 ∀ 𝑧 ∀ 𝑤 ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) → ∃ 𝑣 ∀ 𝑢 ( ∃ 𝑡 ( ( 𝑢 ∈ 𝑤 ∧ 𝑤 ∈ 𝑡 ) ∧ ( 𝑢 ∈ 𝑡 ∧ 𝑡 ∈ 𝑦 ) ) ↔ 𝑢 = 𝑣 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axac3 | ⊢ CHOICE | |
2 | dfac0 | ⊢ ( CHOICE ↔ ∀ 𝑥 ∃ 𝑦 ∀ 𝑧 ∀ 𝑤 ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) → ∃ 𝑣 ∀ 𝑢 ( ∃ 𝑡 ( ( 𝑢 ∈ 𝑤 ∧ 𝑤 ∈ 𝑡 ) ∧ ( 𝑢 ∈ 𝑡 ∧ 𝑡 ∈ 𝑦 ) ) ↔ 𝑢 = 𝑣 ) ) ) | |
3 | 1 2 | mpbi | ⊢ ∀ 𝑥 ∃ 𝑦 ∀ 𝑧 ∀ 𝑤 ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) → ∃ 𝑣 ∀ 𝑢 ( ∃ 𝑡 ( ( 𝑢 ∈ 𝑤 ∧ 𝑤 ∈ 𝑡 ) ∧ ( 𝑢 ∈ 𝑡 ∧ 𝑡 ∈ 𝑦 ) ) ↔ 𝑢 = 𝑣 ) ) |
4 | 3 | spi | ⊢ ∃ 𝑦 ∀ 𝑧 ∀ 𝑤 ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) → ∃ 𝑣 ∀ 𝑢 ( ∃ 𝑡 ( ( 𝑢 ∈ 𝑤 ∧ 𝑤 ∈ 𝑡 ) ∧ ( 𝑢 ∈ 𝑡 ∧ 𝑡 ∈ 𝑦 ) ) ↔ 𝑢 = 𝑣 ) ) |