| Step |
Hyp |
Ref |
Expression |
| 1 |
|
axacndlem4 |
⊢ ∃ 𝑥 ∀ 𝑣 ∀ 𝑧 ( ∀ 𝑥 ( 𝑣 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑣 ( ∃ 𝑤 ( ( 𝑣 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑣 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑣 = 𝑤 ) ) |
| 2 |
|
nfnae |
⊢ Ⅎ 𝑥 ¬ ∀ 𝑦 𝑦 = 𝑧 |
| 3 |
|
nfnae |
⊢ Ⅎ 𝑥 ¬ ∀ 𝑦 𝑦 = 𝑥 |
| 4 |
|
nfnae |
⊢ Ⅎ 𝑥 ¬ ∀ 𝑦 𝑦 = 𝑤 |
| 5 |
2 3 4
|
nf3an |
⊢ Ⅎ 𝑥 ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) |
| 6 |
|
nfnae |
⊢ Ⅎ 𝑦 ¬ ∀ 𝑦 𝑦 = 𝑧 |
| 7 |
|
nfnae |
⊢ Ⅎ 𝑦 ¬ ∀ 𝑦 𝑦 = 𝑥 |
| 8 |
|
nfnae |
⊢ Ⅎ 𝑦 ¬ ∀ 𝑦 𝑦 = 𝑤 |
| 9 |
6 7 8
|
nf3an |
⊢ Ⅎ 𝑦 ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) |
| 10 |
|
nfnae |
⊢ Ⅎ 𝑧 ¬ ∀ 𝑦 𝑦 = 𝑧 |
| 11 |
|
nfnae |
⊢ Ⅎ 𝑧 ¬ ∀ 𝑦 𝑦 = 𝑥 |
| 12 |
|
nfnae |
⊢ Ⅎ 𝑧 ¬ ∀ 𝑦 𝑦 = 𝑤 |
| 13 |
10 11 12
|
nf3an |
⊢ Ⅎ 𝑧 ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) |
| 14 |
|
nfcvd |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) → Ⅎ 𝑦 𝑣 ) |
| 15 |
|
nfcvf |
⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑧 → Ⅎ 𝑦 𝑧 ) |
| 16 |
15
|
3ad2ant1 |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) → Ⅎ 𝑦 𝑧 ) |
| 17 |
14 16
|
nfeld |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) → Ⅎ 𝑦 𝑣 ∈ 𝑧 ) |
| 18 |
|
nfcvf |
⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑤 → Ⅎ 𝑦 𝑤 ) |
| 19 |
18
|
3ad2ant3 |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) → Ⅎ 𝑦 𝑤 ) |
| 20 |
16 19
|
nfeld |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) → Ⅎ 𝑦 𝑧 ∈ 𝑤 ) |
| 21 |
17 20
|
nfand |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) → Ⅎ 𝑦 ( 𝑣 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ) |
| 22 |
5 21
|
nfald |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) → Ⅎ 𝑦 ∀ 𝑥 ( 𝑣 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ) |
| 23 |
|
nfnae |
⊢ Ⅎ 𝑤 ¬ ∀ 𝑦 𝑦 = 𝑧 |
| 24 |
|
nfnae |
⊢ Ⅎ 𝑤 ¬ ∀ 𝑦 𝑦 = 𝑥 |
| 25 |
|
nfnae |
⊢ Ⅎ 𝑤 ¬ ∀ 𝑦 𝑦 = 𝑤 |
| 26 |
23 24 25
|
nf3an |
⊢ Ⅎ 𝑤 ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) |
| 27 |
|
nfv |
⊢ Ⅎ 𝑣 ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) |
| 28 |
14 19
|
nfeld |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) → Ⅎ 𝑦 𝑣 ∈ 𝑤 ) |
| 29 |
|
nfcvf |
⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑥 → Ⅎ 𝑦 𝑥 ) |
| 30 |
29
|
3ad2ant2 |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) → Ⅎ 𝑦 𝑥 ) |
| 31 |
19 30
|
nfeld |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) → Ⅎ 𝑦 𝑤 ∈ 𝑥 ) |
| 32 |
28 31
|
nfand |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) → Ⅎ 𝑦 ( 𝑣 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) |
| 33 |
21 32
|
nfand |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) → Ⅎ 𝑦 ( ( 𝑣 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑣 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ) |
| 34 |
26 33
|
nfexd |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) → Ⅎ 𝑦 ∃ 𝑤 ( ( 𝑣 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑣 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ) |
| 35 |
14 19
|
nfeqd |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) → Ⅎ 𝑦 𝑣 = 𝑤 ) |
| 36 |
34 35
|
nfbid |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) → Ⅎ 𝑦 ( ∃ 𝑤 ( ( 𝑣 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑣 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑣 = 𝑤 ) ) |
| 37 |
27 36
|
nfald |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) → Ⅎ 𝑦 ∀ 𝑣 ( ∃ 𝑤 ( ( 𝑣 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑣 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑣 = 𝑤 ) ) |
| 38 |
26 37
|
nfexd |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) → Ⅎ 𝑦 ∃ 𝑤 ∀ 𝑣 ( ∃ 𝑤 ( ( 𝑣 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑣 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑣 = 𝑤 ) ) |
| 39 |
22 38
|
nfimd |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) → Ⅎ 𝑦 ( ∀ 𝑥 ( 𝑣 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑣 ( ∃ 𝑤 ( ( 𝑣 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑣 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑣 = 𝑤 ) ) ) |
| 40 |
13 39
|
nfald |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) → Ⅎ 𝑦 ∀ 𝑧 ( ∀ 𝑥 ( 𝑣 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑣 ( ∃ 𝑤 ( ( 𝑣 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑣 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑣 = 𝑤 ) ) ) |
| 41 |
|
nfcvd |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) → Ⅎ 𝑧 𝑣 ) |
| 42 |
|
nfcvf2 |
⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑧 → Ⅎ 𝑧 𝑦 ) |
| 43 |
42
|
3ad2ant1 |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) → Ⅎ 𝑧 𝑦 ) |
| 44 |
41 43
|
nfeqd |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) → Ⅎ 𝑧 𝑣 = 𝑦 ) |
| 45 |
13 44
|
nfan1 |
⊢ Ⅎ 𝑧 ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) ∧ 𝑣 = 𝑦 ) |
| 46 |
|
nfcvd |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) → Ⅎ 𝑥 𝑣 ) |
| 47 |
|
nfcvf2 |
⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑥 → Ⅎ 𝑥 𝑦 ) |
| 48 |
47
|
3ad2ant2 |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) → Ⅎ 𝑥 𝑦 ) |
| 49 |
46 48
|
nfeqd |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) → Ⅎ 𝑥 𝑣 = 𝑦 ) |
| 50 |
5 49
|
nfan1 |
⊢ Ⅎ 𝑥 ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) ∧ 𝑣 = 𝑦 ) |
| 51 |
|
simpr |
⊢ ( ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) ∧ 𝑣 = 𝑦 ) → 𝑣 = 𝑦 ) |
| 52 |
51
|
eleq1d |
⊢ ( ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) ∧ 𝑣 = 𝑦 ) → ( 𝑣 ∈ 𝑧 ↔ 𝑦 ∈ 𝑧 ) ) |
| 53 |
52
|
anbi1d |
⊢ ( ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) ∧ 𝑣 = 𝑦 ) → ( ( 𝑣 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ↔ ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ) ) |
| 54 |
50 53
|
albid |
⊢ ( ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) ∧ 𝑣 = 𝑦 ) → ( ∀ 𝑥 ( 𝑣 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ↔ ∀ 𝑥 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ) ) |
| 55 |
|
nfcvd |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) → Ⅎ 𝑤 𝑣 ) |
| 56 |
|
nfcvf2 |
⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑤 → Ⅎ 𝑤 𝑦 ) |
| 57 |
56
|
3ad2ant3 |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) → Ⅎ 𝑤 𝑦 ) |
| 58 |
55 57
|
nfeqd |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) → Ⅎ 𝑤 𝑣 = 𝑦 ) |
| 59 |
26 58
|
nfan1 |
⊢ Ⅎ 𝑤 ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) ∧ 𝑣 = 𝑦 ) |
| 60 |
51
|
eleq1d |
⊢ ( ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) ∧ 𝑣 = 𝑦 ) → ( 𝑣 ∈ 𝑤 ↔ 𝑦 ∈ 𝑤 ) ) |
| 61 |
60
|
anbi1d |
⊢ ( ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) ∧ 𝑣 = 𝑦 ) → ( ( 𝑣 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ↔ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ) |
| 62 |
53 61
|
anbi12d |
⊢ ( ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) ∧ 𝑣 = 𝑦 ) → ( ( ( 𝑣 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑣 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ) ) |
| 63 |
59 62
|
exbid |
⊢ ( ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) ∧ 𝑣 = 𝑦 ) → ( ∃ 𝑤 ( ( 𝑣 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑣 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ) ) |
| 64 |
51
|
eqeq1d |
⊢ ( ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) ∧ 𝑣 = 𝑦 ) → ( 𝑣 = 𝑤 ↔ 𝑦 = 𝑤 ) ) |
| 65 |
63 64
|
bibi12d |
⊢ ( ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) ∧ 𝑣 = 𝑦 ) → ( ( ∃ 𝑤 ( ( 𝑣 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑣 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑣 = 𝑤 ) ↔ ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ) |
| 66 |
65
|
ex |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) → ( 𝑣 = 𝑦 → ( ( ∃ 𝑤 ( ( 𝑣 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑣 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑣 = 𝑤 ) ↔ ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ) ) |
| 67 |
9 36 66
|
cbvald |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) → ( ∀ 𝑣 ( ∃ 𝑤 ( ( 𝑣 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑣 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑣 = 𝑤 ) ↔ ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ) |
| 68 |
26 67
|
exbid |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) → ( ∃ 𝑤 ∀ 𝑣 ( ∃ 𝑤 ( ( 𝑣 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑣 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑣 = 𝑤 ) ↔ ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ) |
| 69 |
68
|
adantr |
⊢ ( ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) ∧ 𝑣 = 𝑦 ) → ( ∃ 𝑤 ∀ 𝑣 ( ∃ 𝑤 ( ( 𝑣 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑣 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑣 = 𝑤 ) ↔ ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ) |
| 70 |
54 69
|
imbi12d |
⊢ ( ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) ∧ 𝑣 = 𝑦 ) → ( ( ∀ 𝑥 ( 𝑣 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑣 ( ∃ 𝑤 ( ( 𝑣 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑣 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑣 = 𝑤 ) ) ↔ ( ∀ 𝑥 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ) ) |
| 71 |
45 70
|
albid |
⊢ ( ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) ∧ 𝑣 = 𝑦 ) → ( ∀ 𝑧 ( ∀ 𝑥 ( 𝑣 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑣 ( ∃ 𝑤 ( ( 𝑣 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑣 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑣 = 𝑤 ) ) ↔ ∀ 𝑧 ( ∀ 𝑥 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ) ) |
| 72 |
71
|
ex |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) → ( 𝑣 = 𝑦 → ( ∀ 𝑧 ( ∀ 𝑥 ( 𝑣 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑣 ( ∃ 𝑤 ( ( 𝑣 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑣 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑣 = 𝑤 ) ) ↔ ∀ 𝑧 ( ∀ 𝑥 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ) ) ) |
| 73 |
9 40 72
|
cbvald |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) → ( ∀ 𝑣 ∀ 𝑧 ( ∀ 𝑥 ( 𝑣 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑣 ( ∃ 𝑤 ( ( 𝑣 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑣 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑣 = 𝑤 ) ) ↔ ∀ 𝑦 ∀ 𝑧 ( ∀ 𝑥 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ) ) |
| 74 |
5 73
|
exbid |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) → ( ∃ 𝑥 ∀ 𝑣 ∀ 𝑧 ( ∀ 𝑥 ( 𝑣 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑣 ( ∃ 𝑤 ( ( 𝑣 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑣 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑣 = 𝑤 ) ) ↔ ∃ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ∀ 𝑥 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ) ) |
| 75 |
1 74
|
mpbii |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) → ∃ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ∀ 𝑥 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ) |
| 76 |
75
|
3exp |
⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑧 → ( ¬ ∀ 𝑦 𝑦 = 𝑥 → ( ¬ ∀ 𝑦 𝑦 = 𝑤 → ∃ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ∀ 𝑥 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ) ) ) |
| 77 |
|
axacndlem3 |
⊢ ( ∀ 𝑦 𝑦 = 𝑧 → ∃ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ∀ 𝑥 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ) |
| 78 |
|
axacndlem1 |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ∃ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ∀ 𝑥 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ) |
| 79 |
78
|
aecoms |
⊢ ( ∀ 𝑦 𝑦 = 𝑥 → ∃ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ∀ 𝑥 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ) |
| 80 |
|
nfae |
⊢ Ⅎ 𝑧 ∀ 𝑦 𝑦 = 𝑤 |
| 81 |
|
en2lp |
⊢ ¬ ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑦 ) |
| 82 |
|
elequ2 |
⊢ ( 𝑦 = 𝑤 → ( 𝑧 ∈ 𝑦 ↔ 𝑧 ∈ 𝑤 ) ) |
| 83 |
82
|
anbi2d |
⊢ ( 𝑦 = 𝑤 → ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑦 ) ↔ ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ) ) |
| 84 |
81 83
|
mtbii |
⊢ ( 𝑦 = 𝑤 → ¬ ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ) |
| 85 |
84
|
sps |
⊢ ( ∀ 𝑦 𝑦 = 𝑤 → ¬ ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ) |
| 86 |
85
|
pm2.21d |
⊢ ( ∀ 𝑦 𝑦 = 𝑤 → ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ) |
| 87 |
86
|
spsd |
⊢ ( ∀ 𝑦 𝑦 = 𝑤 → ( ∀ 𝑥 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ) |
| 88 |
80 87
|
alrimi |
⊢ ( ∀ 𝑦 𝑦 = 𝑤 → ∀ 𝑧 ( ∀ 𝑥 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ) |
| 89 |
88
|
axc4i |
⊢ ( ∀ 𝑦 𝑦 = 𝑤 → ∀ 𝑦 ∀ 𝑧 ( ∀ 𝑥 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ) |
| 90 |
89
|
19.8ad |
⊢ ( ∀ 𝑦 𝑦 = 𝑤 → ∃ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ∀ 𝑥 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ) |
| 91 |
76 77 79 90
|
pm2.61iii |
⊢ ∃ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ∀ 𝑥 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) |