Step |
Hyp |
Ref |
Expression |
1 |
|
axacndlem4 |
⊢ ∃ 𝑥 ∀ 𝑣 ∀ 𝑧 ( ∀ 𝑥 ( 𝑣 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑣 ( ∃ 𝑤 ( ( 𝑣 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑣 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑣 = 𝑤 ) ) |
2 |
|
nfnae |
⊢ Ⅎ 𝑥 ¬ ∀ 𝑦 𝑦 = 𝑧 |
3 |
|
nfnae |
⊢ Ⅎ 𝑥 ¬ ∀ 𝑦 𝑦 = 𝑥 |
4 |
|
nfnae |
⊢ Ⅎ 𝑥 ¬ ∀ 𝑦 𝑦 = 𝑤 |
5 |
2 3 4
|
nf3an |
⊢ Ⅎ 𝑥 ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) |
6 |
|
nfnae |
⊢ Ⅎ 𝑦 ¬ ∀ 𝑦 𝑦 = 𝑧 |
7 |
|
nfnae |
⊢ Ⅎ 𝑦 ¬ ∀ 𝑦 𝑦 = 𝑥 |
8 |
|
nfnae |
⊢ Ⅎ 𝑦 ¬ ∀ 𝑦 𝑦 = 𝑤 |
9 |
6 7 8
|
nf3an |
⊢ Ⅎ 𝑦 ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) |
10 |
|
nfnae |
⊢ Ⅎ 𝑧 ¬ ∀ 𝑦 𝑦 = 𝑧 |
11 |
|
nfnae |
⊢ Ⅎ 𝑧 ¬ ∀ 𝑦 𝑦 = 𝑥 |
12 |
|
nfnae |
⊢ Ⅎ 𝑧 ¬ ∀ 𝑦 𝑦 = 𝑤 |
13 |
10 11 12
|
nf3an |
⊢ Ⅎ 𝑧 ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) |
14 |
|
nfcvd |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) → Ⅎ 𝑦 𝑣 ) |
15 |
|
nfcvf |
⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑧 → Ⅎ 𝑦 𝑧 ) |
16 |
15
|
3ad2ant1 |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) → Ⅎ 𝑦 𝑧 ) |
17 |
14 16
|
nfeld |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) → Ⅎ 𝑦 𝑣 ∈ 𝑧 ) |
18 |
|
nfcvf |
⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑤 → Ⅎ 𝑦 𝑤 ) |
19 |
18
|
3ad2ant3 |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) → Ⅎ 𝑦 𝑤 ) |
20 |
16 19
|
nfeld |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) → Ⅎ 𝑦 𝑧 ∈ 𝑤 ) |
21 |
17 20
|
nfand |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) → Ⅎ 𝑦 ( 𝑣 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ) |
22 |
5 21
|
nfald |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) → Ⅎ 𝑦 ∀ 𝑥 ( 𝑣 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ) |
23 |
|
nfnae |
⊢ Ⅎ 𝑤 ¬ ∀ 𝑦 𝑦 = 𝑧 |
24 |
|
nfnae |
⊢ Ⅎ 𝑤 ¬ ∀ 𝑦 𝑦 = 𝑥 |
25 |
|
nfnae |
⊢ Ⅎ 𝑤 ¬ ∀ 𝑦 𝑦 = 𝑤 |
26 |
23 24 25
|
nf3an |
⊢ Ⅎ 𝑤 ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) |
27 |
|
nfv |
⊢ Ⅎ 𝑣 ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) |
28 |
14 19
|
nfeld |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) → Ⅎ 𝑦 𝑣 ∈ 𝑤 ) |
29 |
|
nfcvf |
⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑥 → Ⅎ 𝑦 𝑥 ) |
30 |
29
|
3ad2ant2 |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) → Ⅎ 𝑦 𝑥 ) |
31 |
19 30
|
nfeld |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) → Ⅎ 𝑦 𝑤 ∈ 𝑥 ) |
32 |
28 31
|
nfand |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) → Ⅎ 𝑦 ( 𝑣 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) |
33 |
21 32
|
nfand |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) → Ⅎ 𝑦 ( ( 𝑣 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑣 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ) |
34 |
26 33
|
nfexd |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) → Ⅎ 𝑦 ∃ 𝑤 ( ( 𝑣 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑣 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ) |
35 |
14 19
|
nfeqd |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) → Ⅎ 𝑦 𝑣 = 𝑤 ) |
36 |
34 35
|
nfbid |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) → Ⅎ 𝑦 ( ∃ 𝑤 ( ( 𝑣 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑣 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑣 = 𝑤 ) ) |
37 |
27 36
|
nfald |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) → Ⅎ 𝑦 ∀ 𝑣 ( ∃ 𝑤 ( ( 𝑣 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑣 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑣 = 𝑤 ) ) |
38 |
26 37
|
nfexd |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) → Ⅎ 𝑦 ∃ 𝑤 ∀ 𝑣 ( ∃ 𝑤 ( ( 𝑣 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑣 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑣 = 𝑤 ) ) |
39 |
22 38
|
nfimd |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) → Ⅎ 𝑦 ( ∀ 𝑥 ( 𝑣 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑣 ( ∃ 𝑤 ( ( 𝑣 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑣 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑣 = 𝑤 ) ) ) |
40 |
13 39
|
nfald |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) → Ⅎ 𝑦 ∀ 𝑧 ( ∀ 𝑥 ( 𝑣 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑣 ( ∃ 𝑤 ( ( 𝑣 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑣 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑣 = 𝑤 ) ) ) |
41 |
|
nfcvd |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) → Ⅎ 𝑧 𝑣 ) |
42 |
|
nfcvf2 |
⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑧 → Ⅎ 𝑧 𝑦 ) |
43 |
42
|
3ad2ant1 |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) → Ⅎ 𝑧 𝑦 ) |
44 |
41 43
|
nfeqd |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) → Ⅎ 𝑧 𝑣 = 𝑦 ) |
45 |
13 44
|
nfan1 |
⊢ Ⅎ 𝑧 ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) ∧ 𝑣 = 𝑦 ) |
46 |
|
nfcvd |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) → Ⅎ 𝑥 𝑣 ) |
47 |
|
nfcvf2 |
⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑥 → Ⅎ 𝑥 𝑦 ) |
48 |
47
|
3ad2ant2 |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) → Ⅎ 𝑥 𝑦 ) |
49 |
46 48
|
nfeqd |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) → Ⅎ 𝑥 𝑣 = 𝑦 ) |
50 |
5 49
|
nfan1 |
⊢ Ⅎ 𝑥 ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) ∧ 𝑣 = 𝑦 ) |
51 |
|
simpr |
⊢ ( ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) ∧ 𝑣 = 𝑦 ) → 𝑣 = 𝑦 ) |
52 |
51
|
eleq1d |
⊢ ( ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) ∧ 𝑣 = 𝑦 ) → ( 𝑣 ∈ 𝑧 ↔ 𝑦 ∈ 𝑧 ) ) |
53 |
52
|
anbi1d |
⊢ ( ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) ∧ 𝑣 = 𝑦 ) → ( ( 𝑣 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ↔ ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ) ) |
54 |
50 53
|
albid |
⊢ ( ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) ∧ 𝑣 = 𝑦 ) → ( ∀ 𝑥 ( 𝑣 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ↔ ∀ 𝑥 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ) ) |
55 |
|
nfcvd |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) → Ⅎ 𝑤 𝑣 ) |
56 |
|
nfcvf2 |
⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑤 → Ⅎ 𝑤 𝑦 ) |
57 |
56
|
3ad2ant3 |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) → Ⅎ 𝑤 𝑦 ) |
58 |
55 57
|
nfeqd |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) → Ⅎ 𝑤 𝑣 = 𝑦 ) |
59 |
26 58
|
nfan1 |
⊢ Ⅎ 𝑤 ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) ∧ 𝑣 = 𝑦 ) |
60 |
51
|
eleq1d |
⊢ ( ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) ∧ 𝑣 = 𝑦 ) → ( 𝑣 ∈ 𝑤 ↔ 𝑦 ∈ 𝑤 ) ) |
61 |
60
|
anbi1d |
⊢ ( ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) ∧ 𝑣 = 𝑦 ) → ( ( 𝑣 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ↔ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ) |
62 |
53 61
|
anbi12d |
⊢ ( ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) ∧ 𝑣 = 𝑦 ) → ( ( ( 𝑣 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑣 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ) ) |
63 |
59 62
|
exbid |
⊢ ( ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) ∧ 𝑣 = 𝑦 ) → ( ∃ 𝑤 ( ( 𝑣 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑣 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ) ) |
64 |
51
|
eqeq1d |
⊢ ( ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) ∧ 𝑣 = 𝑦 ) → ( 𝑣 = 𝑤 ↔ 𝑦 = 𝑤 ) ) |
65 |
63 64
|
bibi12d |
⊢ ( ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) ∧ 𝑣 = 𝑦 ) → ( ( ∃ 𝑤 ( ( 𝑣 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑣 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑣 = 𝑤 ) ↔ ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ) |
66 |
65
|
ex |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) → ( 𝑣 = 𝑦 → ( ( ∃ 𝑤 ( ( 𝑣 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑣 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑣 = 𝑤 ) ↔ ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ) ) |
67 |
9 36 66
|
cbvald |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) → ( ∀ 𝑣 ( ∃ 𝑤 ( ( 𝑣 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑣 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑣 = 𝑤 ) ↔ ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ) |
68 |
26 67
|
exbid |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) → ( ∃ 𝑤 ∀ 𝑣 ( ∃ 𝑤 ( ( 𝑣 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑣 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑣 = 𝑤 ) ↔ ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ) |
69 |
68
|
adantr |
⊢ ( ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) ∧ 𝑣 = 𝑦 ) → ( ∃ 𝑤 ∀ 𝑣 ( ∃ 𝑤 ( ( 𝑣 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑣 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑣 = 𝑤 ) ↔ ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ) |
70 |
54 69
|
imbi12d |
⊢ ( ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) ∧ 𝑣 = 𝑦 ) → ( ( ∀ 𝑥 ( 𝑣 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑣 ( ∃ 𝑤 ( ( 𝑣 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑣 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑣 = 𝑤 ) ) ↔ ( ∀ 𝑥 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ) ) |
71 |
45 70
|
albid |
⊢ ( ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) ∧ 𝑣 = 𝑦 ) → ( ∀ 𝑧 ( ∀ 𝑥 ( 𝑣 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑣 ( ∃ 𝑤 ( ( 𝑣 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑣 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑣 = 𝑤 ) ) ↔ ∀ 𝑧 ( ∀ 𝑥 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ) ) |
72 |
71
|
ex |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) → ( 𝑣 = 𝑦 → ( ∀ 𝑧 ( ∀ 𝑥 ( 𝑣 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑣 ( ∃ 𝑤 ( ( 𝑣 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑣 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑣 = 𝑤 ) ) ↔ ∀ 𝑧 ( ∀ 𝑥 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ) ) ) |
73 |
9 40 72
|
cbvald |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) → ( ∀ 𝑣 ∀ 𝑧 ( ∀ 𝑥 ( 𝑣 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑣 ( ∃ 𝑤 ( ( 𝑣 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑣 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑣 = 𝑤 ) ) ↔ ∀ 𝑦 ∀ 𝑧 ( ∀ 𝑥 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ) ) |
74 |
5 73
|
exbid |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) → ( ∃ 𝑥 ∀ 𝑣 ∀ 𝑧 ( ∀ 𝑥 ( 𝑣 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑣 ( ∃ 𝑤 ( ( 𝑣 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑣 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑣 = 𝑤 ) ) ↔ ∃ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ∀ 𝑥 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ) ) |
75 |
1 74
|
mpbii |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) → ∃ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ∀ 𝑥 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ) |
76 |
75
|
3exp |
⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑧 → ( ¬ ∀ 𝑦 𝑦 = 𝑥 → ( ¬ ∀ 𝑦 𝑦 = 𝑤 → ∃ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ∀ 𝑥 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ) ) ) |
77 |
|
axacndlem3 |
⊢ ( ∀ 𝑦 𝑦 = 𝑧 → ∃ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ∀ 𝑥 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ) |
78 |
|
axacndlem1 |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ∃ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ∀ 𝑥 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ) |
79 |
78
|
aecoms |
⊢ ( ∀ 𝑦 𝑦 = 𝑥 → ∃ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ∀ 𝑥 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ) |
80 |
|
nfae |
⊢ Ⅎ 𝑧 ∀ 𝑦 𝑦 = 𝑤 |
81 |
|
en2lp |
⊢ ¬ ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑦 ) |
82 |
|
elequ2 |
⊢ ( 𝑦 = 𝑤 → ( 𝑧 ∈ 𝑦 ↔ 𝑧 ∈ 𝑤 ) ) |
83 |
82
|
anbi2d |
⊢ ( 𝑦 = 𝑤 → ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑦 ) ↔ ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ) ) |
84 |
81 83
|
mtbii |
⊢ ( 𝑦 = 𝑤 → ¬ ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ) |
85 |
84
|
sps |
⊢ ( ∀ 𝑦 𝑦 = 𝑤 → ¬ ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ) |
86 |
85
|
pm2.21d |
⊢ ( ∀ 𝑦 𝑦 = 𝑤 → ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ) |
87 |
86
|
spsd |
⊢ ( ∀ 𝑦 𝑦 = 𝑤 → ( ∀ 𝑥 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ) |
88 |
80 87
|
alrimi |
⊢ ( ∀ 𝑦 𝑦 = 𝑤 → ∀ 𝑧 ( ∀ 𝑥 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ) |
89 |
88
|
axc4i |
⊢ ( ∀ 𝑦 𝑦 = 𝑤 → ∀ 𝑦 ∀ 𝑧 ( ∀ 𝑥 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ) |
90 |
89
|
19.8ad |
⊢ ( ∀ 𝑦 𝑦 = 𝑤 → ∃ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ∀ 𝑥 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ) |
91 |
76 77 79 90
|
pm2.61iii |
⊢ ∃ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ∀ 𝑥 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) |