Step |
Hyp |
Ref |
Expression |
1 |
|
dfcnqs |
⊢ ℂ = ( ( R × R ) / ◡ E ) |
2 |
|
addcnsrec |
⊢ ( ( ( 𝑥 ∈ R ∧ 𝑦 ∈ R ) ∧ ( 𝑧 ∈ R ∧ 𝑤 ∈ R ) ) → ( [ 〈 𝑥 , 𝑦 〉 ] ◡ E + [ 〈 𝑧 , 𝑤 〉 ] ◡ E ) = [ 〈 ( 𝑥 +R 𝑧 ) , ( 𝑦 +R 𝑤 ) 〉 ] ◡ E ) |
3 |
|
addcnsrec |
⊢ ( ( ( 𝑧 ∈ R ∧ 𝑤 ∈ R ) ∧ ( 𝑣 ∈ R ∧ 𝑢 ∈ R ) ) → ( [ 〈 𝑧 , 𝑤 〉 ] ◡ E + [ 〈 𝑣 , 𝑢 〉 ] ◡ E ) = [ 〈 ( 𝑧 +R 𝑣 ) , ( 𝑤 +R 𝑢 ) 〉 ] ◡ E ) |
4 |
|
addcnsrec |
⊢ ( ( ( ( 𝑥 +R 𝑧 ) ∈ R ∧ ( 𝑦 +R 𝑤 ) ∈ R ) ∧ ( 𝑣 ∈ R ∧ 𝑢 ∈ R ) ) → ( [ 〈 ( 𝑥 +R 𝑧 ) , ( 𝑦 +R 𝑤 ) 〉 ] ◡ E + [ 〈 𝑣 , 𝑢 〉 ] ◡ E ) = [ 〈 ( ( 𝑥 +R 𝑧 ) +R 𝑣 ) , ( ( 𝑦 +R 𝑤 ) +R 𝑢 ) 〉 ] ◡ E ) |
5 |
|
addcnsrec |
⊢ ( ( ( 𝑥 ∈ R ∧ 𝑦 ∈ R ) ∧ ( ( 𝑧 +R 𝑣 ) ∈ R ∧ ( 𝑤 +R 𝑢 ) ∈ R ) ) → ( [ 〈 𝑥 , 𝑦 〉 ] ◡ E + [ 〈 ( 𝑧 +R 𝑣 ) , ( 𝑤 +R 𝑢 ) 〉 ] ◡ E ) = [ 〈 ( 𝑥 +R ( 𝑧 +R 𝑣 ) ) , ( 𝑦 +R ( 𝑤 +R 𝑢 ) ) 〉 ] ◡ E ) |
6 |
|
addclsr |
⊢ ( ( 𝑥 ∈ R ∧ 𝑧 ∈ R ) → ( 𝑥 +R 𝑧 ) ∈ R ) |
7 |
|
addclsr |
⊢ ( ( 𝑦 ∈ R ∧ 𝑤 ∈ R ) → ( 𝑦 +R 𝑤 ) ∈ R ) |
8 |
6 7
|
anim12i |
⊢ ( ( ( 𝑥 ∈ R ∧ 𝑧 ∈ R ) ∧ ( 𝑦 ∈ R ∧ 𝑤 ∈ R ) ) → ( ( 𝑥 +R 𝑧 ) ∈ R ∧ ( 𝑦 +R 𝑤 ) ∈ R ) ) |
9 |
8
|
an4s |
⊢ ( ( ( 𝑥 ∈ R ∧ 𝑦 ∈ R ) ∧ ( 𝑧 ∈ R ∧ 𝑤 ∈ R ) ) → ( ( 𝑥 +R 𝑧 ) ∈ R ∧ ( 𝑦 +R 𝑤 ) ∈ R ) ) |
10 |
|
addclsr |
⊢ ( ( 𝑧 ∈ R ∧ 𝑣 ∈ R ) → ( 𝑧 +R 𝑣 ) ∈ R ) |
11 |
|
addclsr |
⊢ ( ( 𝑤 ∈ R ∧ 𝑢 ∈ R ) → ( 𝑤 +R 𝑢 ) ∈ R ) |
12 |
10 11
|
anim12i |
⊢ ( ( ( 𝑧 ∈ R ∧ 𝑣 ∈ R ) ∧ ( 𝑤 ∈ R ∧ 𝑢 ∈ R ) ) → ( ( 𝑧 +R 𝑣 ) ∈ R ∧ ( 𝑤 +R 𝑢 ) ∈ R ) ) |
13 |
12
|
an4s |
⊢ ( ( ( 𝑧 ∈ R ∧ 𝑤 ∈ R ) ∧ ( 𝑣 ∈ R ∧ 𝑢 ∈ R ) ) → ( ( 𝑧 +R 𝑣 ) ∈ R ∧ ( 𝑤 +R 𝑢 ) ∈ R ) ) |
14 |
|
addasssr |
⊢ ( ( 𝑥 +R 𝑧 ) +R 𝑣 ) = ( 𝑥 +R ( 𝑧 +R 𝑣 ) ) |
15 |
|
addasssr |
⊢ ( ( 𝑦 +R 𝑤 ) +R 𝑢 ) = ( 𝑦 +R ( 𝑤 +R 𝑢 ) ) |
16 |
1 2 3 4 5 9 13 14 15
|
ecovass |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 + 𝐵 ) + 𝐶 ) = ( 𝐴 + ( 𝐵 + 𝐶 ) ) ) |