Metamath Proof Explorer


Theorem axaddrcl

Description: Closure law for addition in the real subfield of complex numbers. Axiom 5 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-addrcl be used later. Instead, in most cases use readdcl . (Contributed by NM, 31-Mar-1996) (New usage is discouraged.)

Ref Expression
Assertion axaddrcl ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 + 𝐵 ) ∈ ℝ )

Proof

Step Hyp Ref Expression
1 elreal ( 𝐴 ∈ ℝ ↔ ∃ 𝑥R𝑥 , 0R ⟩ = 𝐴 )
2 elreal ( 𝐵 ∈ ℝ ↔ ∃ 𝑦R𝑦 , 0R ⟩ = 𝐵 )
3 oveq1 ( ⟨ 𝑥 , 0R ⟩ = 𝐴 → ( ⟨ 𝑥 , 0R ⟩ + ⟨ 𝑦 , 0R ⟩ ) = ( 𝐴 + ⟨ 𝑦 , 0R ⟩ ) )
4 3 eleq1d ( ⟨ 𝑥 , 0R ⟩ = 𝐴 → ( ( ⟨ 𝑥 , 0R ⟩ + ⟨ 𝑦 , 0R ⟩ ) ∈ ℝ ↔ ( 𝐴 + ⟨ 𝑦 , 0R ⟩ ) ∈ ℝ ) )
5 oveq2 ( ⟨ 𝑦 , 0R ⟩ = 𝐵 → ( 𝐴 + ⟨ 𝑦 , 0R ⟩ ) = ( 𝐴 + 𝐵 ) )
6 5 eleq1d ( ⟨ 𝑦 , 0R ⟩ = 𝐵 → ( ( 𝐴 + ⟨ 𝑦 , 0R ⟩ ) ∈ ℝ ↔ ( 𝐴 + 𝐵 ) ∈ ℝ ) )
7 addresr ( ( 𝑥R𝑦R ) → ( ⟨ 𝑥 , 0R ⟩ + ⟨ 𝑦 , 0R ⟩ ) = ⟨ ( 𝑥 +R 𝑦 ) , 0R ⟩ )
8 addclsr ( ( 𝑥R𝑦R ) → ( 𝑥 +R 𝑦 ) ∈ R )
9 opelreal ( ⟨ ( 𝑥 +R 𝑦 ) , 0R ⟩ ∈ ℝ ↔ ( 𝑥 +R 𝑦 ) ∈ R )
10 8 9 sylibr ( ( 𝑥R𝑦R ) → ⟨ ( 𝑥 +R 𝑦 ) , 0R ⟩ ∈ ℝ )
11 7 10 eqeltrd ( ( 𝑥R𝑦R ) → ( ⟨ 𝑥 , 0R ⟩ + ⟨ 𝑦 , 0R ⟩ ) ∈ ℝ )
12 1 2 4 6 11 2gencl ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 + 𝐵 ) ∈ ℝ )