Step |
Hyp |
Ref |
Expression |
1 |
|
ax-c16 |
⊢ ( ∀ 𝑥 𝑥 = 𝑧 → ( 𝑥 = 𝑤 → ∀ 𝑥 𝑥 = 𝑤 ) ) |
2 |
1
|
alrimiv |
⊢ ( ∀ 𝑥 𝑥 = 𝑧 → ∀ 𝑤 ( 𝑥 = 𝑤 → ∀ 𝑥 𝑥 = 𝑤 ) ) |
3 |
2
|
axc4i-o |
⊢ ( ∀ 𝑥 𝑥 = 𝑧 → ∀ 𝑥 ∀ 𝑤 ( 𝑥 = 𝑤 → ∀ 𝑥 𝑥 = 𝑤 ) ) |
4 |
|
equequ1 |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 = 𝑤 ↔ 𝑧 = 𝑤 ) ) |
5 |
4
|
cbvalvw |
⊢ ( ∀ 𝑥 𝑥 = 𝑤 ↔ ∀ 𝑧 𝑧 = 𝑤 ) |
6 |
5
|
a1i |
⊢ ( 𝑥 = 𝑧 → ( ∀ 𝑥 𝑥 = 𝑤 ↔ ∀ 𝑧 𝑧 = 𝑤 ) ) |
7 |
4 6
|
imbi12d |
⊢ ( 𝑥 = 𝑧 → ( ( 𝑥 = 𝑤 → ∀ 𝑥 𝑥 = 𝑤 ) ↔ ( 𝑧 = 𝑤 → ∀ 𝑧 𝑧 = 𝑤 ) ) ) |
8 |
7
|
albidv |
⊢ ( 𝑥 = 𝑧 → ( ∀ 𝑤 ( 𝑥 = 𝑤 → ∀ 𝑥 𝑥 = 𝑤 ) ↔ ∀ 𝑤 ( 𝑧 = 𝑤 → ∀ 𝑧 𝑧 = 𝑤 ) ) ) |
9 |
8
|
cbvalvw |
⊢ ( ∀ 𝑥 ∀ 𝑤 ( 𝑥 = 𝑤 → ∀ 𝑥 𝑥 = 𝑤 ) ↔ ∀ 𝑧 ∀ 𝑤 ( 𝑧 = 𝑤 → ∀ 𝑧 𝑧 = 𝑤 ) ) |
10 |
9
|
biimpi |
⊢ ( ∀ 𝑥 ∀ 𝑤 ( 𝑥 = 𝑤 → ∀ 𝑥 𝑥 = 𝑤 ) → ∀ 𝑧 ∀ 𝑤 ( 𝑧 = 𝑤 → ∀ 𝑧 𝑧 = 𝑤 ) ) |
11 |
|
nfa1-o |
⊢ Ⅎ 𝑧 ∀ 𝑧 𝑧 = 𝑤 |
12 |
11
|
19.23 |
⊢ ( ∀ 𝑧 ( 𝑧 = 𝑤 → ∀ 𝑧 𝑧 = 𝑤 ) ↔ ( ∃ 𝑧 𝑧 = 𝑤 → ∀ 𝑧 𝑧 = 𝑤 ) ) |
13 |
12
|
albii |
⊢ ( ∀ 𝑤 ∀ 𝑧 ( 𝑧 = 𝑤 → ∀ 𝑧 𝑧 = 𝑤 ) ↔ ∀ 𝑤 ( ∃ 𝑧 𝑧 = 𝑤 → ∀ 𝑧 𝑧 = 𝑤 ) ) |
14 |
|
ax6ev |
⊢ ∃ 𝑧 𝑧 = 𝑤 |
15 |
|
pm2.27 |
⊢ ( ∃ 𝑧 𝑧 = 𝑤 → ( ( ∃ 𝑧 𝑧 = 𝑤 → ∀ 𝑧 𝑧 = 𝑤 ) → ∀ 𝑧 𝑧 = 𝑤 ) ) |
16 |
14 15
|
ax-mp |
⊢ ( ( ∃ 𝑧 𝑧 = 𝑤 → ∀ 𝑧 𝑧 = 𝑤 ) → ∀ 𝑧 𝑧 = 𝑤 ) |
17 |
16
|
alimi |
⊢ ( ∀ 𝑤 ( ∃ 𝑧 𝑧 = 𝑤 → ∀ 𝑧 𝑧 = 𝑤 ) → ∀ 𝑤 ∀ 𝑧 𝑧 = 𝑤 ) |
18 |
|
equequ2 |
⊢ ( 𝑤 = 𝑥 → ( 𝑧 = 𝑤 ↔ 𝑧 = 𝑥 ) ) |
19 |
18
|
spv |
⊢ ( ∀ 𝑤 𝑧 = 𝑤 → 𝑧 = 𝑥 ) |
20 |
19
|
sps-o |
⊢ ( ∀ 𝑧 ∀ 𝑤 𝑧 = 𝑤 → 𝑧 = 𝑥 ) |
21 |
20
|
alcoms |
⊢ ( ∀ 𝑤 ∀ 𝑧 𝑧 = 𝑤 → 𝑧 = 𝑥 ) |
22 |
17 21
|
syl |
⊢ ( ∀ 𝑤 ( ∃ 𝑧 𝑧 = 𝑤 → ∀ 𝑧 𝑧 = 𝑤 ) → 𝑧 = 𝑥 ) |
23 |
13 22
|
sylbi |
⊢ ( ∀ 𝑤 ∀ 𝑧 ( 𝑧 = 𝑤 → ∀ 𝑧 𝑧 = 𝑤 ) → 𝑧 = 𝑥 ) |
24 |
23
|
alcoms |
⊢ ( ∀ 𝑧 ∀ 𝑤 ( 𝑧 = 𝑤 → ∀ 𝑧 𝑧 = 𝑤 ) → 𝑧 = 𝑥 ) |
25 |
24
|
axc4i-o |
⊢ ( ∀ 𝑧 ∀ 𝑤 ( 𝑧 = 𝑤 → ∀ 𝑧 𝑧 = 𝑤 ) → ∀ 𝑧 𝑧 = 𝑥 ) |
26 |
3 10 25
|
3syl |
⊢ ( ∀ 𝑥 𝑥 = 𝑧 → ∀ 𝑧 𝑧 = 𝑥 ) |