Metamath Proof Explorer


Theorem axc16

Description: Proof of older axiom ax-c16 . (Contributed by NM, 8-Nov-2006) (Revised by NM, 22-Sep-2017)

Ref Expression
Assertion axc16 ( ∀ 𝑥 𝑥 = 𝑦 → ( 𝜑 → ∀ 𝑥 𝜑 ) )

Proof

Step Hyp Ref Expression
1 axc16g ( ∀ 𝑥 𝑥 = 𝑦 → ( 𝜑 → ∀ 𝑥 𝜑 ) )