Metamath Proof Explorer


Theorem axc16g-o

Description: A generalization of Axiom ax-c16 . Version of axc16g using ax-c11 . (Contributed by NM, 15-May-1993) (Proof shortened by Andrew Salmon, 25-May-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion axc16g-o ( ∀ 𝑥 𝑥 = 𝑦 → ( 𝜑 → ∀ 𝑧 𝜑 ) )

Proof

Step Hyp Ref Expression
1 aev-o ( ∀ 𝑥 𝑥 = 𝑦 → ∀ 𝑧 𝑧 = 𝑥 )
2 ax-c16 ( ∀ 𝑥 𝑥 = 𝑦 → ( 𝜑 → ∀ 𝑥 𝜑 ) )
3 biidd ( ∀ 𝑧 𝑧 = 𝑥 → ( 𝜑𝜑 ) )
4 3 dral1-o ( ∀ 𝑧 𝑧 = 𝑥 → ( ∀ 𝑧 𝜑 ↔ ∀ 𝑥 𝜑 ) )
5 4 biimprd ( ∀ 𝑧 𝑧 = 𝑥 → ( ∀ 𝑥 𝜑 → ∀ 𝑧 𝜑 ) )
6 1 2 5 sylsyld ( ∀ 𝑥 𝑥 = 𝑦 → ( 𝜑 → ∀ 𝑧 𝜑 ) )