Metamath Proof Explorer


Theorem axc16gb

Description: Biconditional strengthening of axc16g . (Contributed by NM, 15-May-1993)

Ref Expression
Assertion axc16gb ( ∀ 𝑥 𝑥 = 𝑦 → ( 𝜑 ↔ ∀ 𝑧 𝜑 ) )

Proof

Step Hyp Ref Expression
1 axc16g ( ∀ 𝑥 𝑥 = 𝑦 → ( 𝜑 → ∀ 𝑧 𝜑 ) )
2 sp ( ∀ 𝑧 𝜑𝜑 )
3 1 2 impbid1 ( ∀ 𝑥 𝑥 = 𝑦 → ( 𝜑 ↔ ∀ 𝑧 𝜑 ) )