Step |
Hyp |
Ref |
Expression |
1 |
|
axc16i.1 |
⊢ ( 𝑥 = 𝑧 → ( 𝜑 ↔ 𝜓 ) ) |
2 |
|
axc16i.2 |
⊢ ( 𝜓 → ∀ 𝑥 𝜓 ) |
3 |
|
nfv |
⊢ Ⅎ 𝑧 𝑥 = 𝑦 |
4 |
|
nfv |
⊢ Ⅎ 𝑥 𝑧 = 𝑦 |
5 |
|
ax7 |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 = 𝑦 → 𝑧 = 𝑦 ) ) |
6 |
3 4 5
|
cbv3 |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ∀ 𝑧 𝑧 = 𝑦 ) |
7 |
|
ax7 |
⊢ ( 𝑧 = 𝑥 → ( 𝑧 = 𝑦 → 𝑥 = 𝑦 ) ) |
8 |
7
|
spimvw |
⊢ ( ∀ 𝑧 𝑧 = 𝑦 → 𝑥 = 𝑦 ) |
9 |
|
equcomi |
⊢ ( 𝑥 = 𝑦 → 𝑦 = 𝑥 ) |
10 |
|
equcomi |
⊢ ( 𝑧 = 𝑦 → 𝑦 = 𝑧 ) |
11 |
|
ax7 |
⊢ ( 𝑦 = 𝑧 → ( 𝑦 = 𝑥 → 𝑧 = 𝑥 ) ) |
12 |
10 11
|
syl |
⊢ ( 𝑧 = 𝑦 → ( 𝑦 = 𝑥 → 𝑧 = 𝑥 ) ) |
13 |
9 12
|
syl5com |
⊢ ( 𝑥 = 𝑦 → ( 𝑧 = 𝑦 → 𝑧 = 𝑥 ) ) |
14 |
13
|
alimdv |
⊢ ( 𝑥 = 𝑦 → ( ∀ 𝑧 𝑧 = 𝑦 → ∀ 𝑧 𝑧 = 𝑥 ) ) |
15 |
8 14
|
mpcom |
⊢ ( ∀ 𝑧 𝑧 = 𝑦 → ∀ 𝑧 𝑧 = 𝑥 ) |
16 |
|
equcomi |
⊢ ( 𝑧 = 𝑥 → 𝑥 = 𝑧 ) |
17 |
16
|
alimi |
⊢ ( ∀ 𝑧 𝑧 = 𝑥 → ∀ 𝑧 𝑥 = 𝑧 ) |
18 |
15 17
|
syl |
⊢ ( ∀ 𝑧 𝑧 = 𝑦 → ∀ 𝑧 𝑥 = 𝑧 ) |
19 |
1
|
biimpcd |
⊢ ( 𝜑 → ( 𝑥 = 𝑧 → 𝜓 ) ) |
20 |
19
|
alimdv |
⊢ ( 𝜑 → ( ∀ 𝑧 𝑥 = 𝑧 → ∀ 𝑧 𝜓 ) ) |
21 |
2
|
nf5i |
⊢ Ⅎ 𝑥 𝜓 |
22 |
|
nfv |
⊢ Ⅎ 𝑧 𝜑 |
23 |
1
|
biimprd |
⊢ ( 𝑥 = 𝑧 → ( 𝜓 → 𝜑 ) ) |
24 |
16 23
|
syl |
⊢ ( 𝑧 = 𝑥 → ( 𝜓 → 𝜑 ) ) |
25 |
21 22 24
|
cbv3 |
⊢ ( ∀ 𝑧 𝜓 → ∀ 𝑥 𝜑 ) |
26 |
20 25
|
syl6com |
⊢ ( ∀ 𝑧 𝑥 = 𝑧 → ( 𝜑 → ∀ 𝑥 𝜑 ) ) |
27 |
6 18 26
|
3syl |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( 𝜑 → ∀ 𝑥 𝜑 ) ) |