| Step |
Hyp |
Ref |
Expression |
| 1 |
|
axc16i.1 |
⊢ ( 𝑥 = 𝑧 → ( 𝜑 ↔ 𝜓 ) ) |
| 2 |
|
axc16i.2 |
⊢ ( 𝜓 → ∀ 𝑥 𝜓 ) |
| 3 |
|
nfv |
⊢ Ⅎ 𝑧 𝑥 = 𝑦 |
| 4 |
|
nfv |
⊢ Ⅎ 𝑥 𝑧 = 𝑦 |
| 5 |
|
ax7 |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 = 𝑦 → 𝑧 = 𝑦 ) ) |
| 6 |
3 4 5
|
cbv3 |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ∀ 𝑧 𝑧 = 𝑦 ) |
| 7 |
|
ax7 |
⊢ ( 𝑧 = 𝑥 → ( 𝑧 = 𝑦 → 𝑥 = 𝑦 ) ) |
| 8 |
7
|
spimvw |
⊢ ( ∀ 𝑧 𝑧 = 𝑦 → 𝑥 = 𝑦 ) |
| 9 |
|
equcomi |
⊢ ( 𝑥 = 𝑦 → 𝑦 = 𝑥 ) |
| 10 |
|
equcomi |
⊢ ( 𝑧 = 𝑦 → 𝑦 = 𝑧 ) |
| 11 |
|
ax7 |
⊢ ( 𝑦 = 𝑧 → ( 𝑦 = 𝑥 → 𝑧 = 𝑥 ) ) |
| 12 |
10 11
|
syl |
⊢ ( 𝑧 = 𝑦 → ( 𝑦 = 𝑥 → 𝑧 = 𝑥 ) ) |
| 13 |
9 12
|
syl5com |
⊢ ( 𝑥 = 𝑦 → ( 𝑧 = 𝑦 → 𝑧 = 𝑥 ) ) |
| 14 |
13
|
alimdv |
⊢ ( 𝑥 = 𝑦 → ( ∀ 𝑧 𝑧 = 𝑦 → ∀ 𝑧 𝑧 = 𝑥 ) ) |
| 15 |
8 14
|
mpcom |
⊢ ( ∀ 𝑧 𝑧 = 𝑦 → ∀ 𝑧 𝑧 = 𝑥 ) |
| 16 |
|
equcomi |
⊢ ( 𝑧 = 𝑥 → 𝑥 = 𝑧 ) |
| 17 |
16
|
alimi |
⊢ ( ∀ 𝑧 𝑧 = 𝑥 → ∀ 𝑧 𝑥 = 𝑧 ) |
| 18 |
15 17
|
syl |
⊢ ( ∀ 𝑧 𝑧 = 𝑦 → ∀ 𝑧 𝑥 = 𝑧 ) |
| 19 |
1
|
biimpcd |
⊢ ( 𝜑 → ( 𝑥 = 𝑧 → 𝜓 ) ) |
| 20 |
19
|
alimdv |
⊢ ( 𝜑 → ( ∀ 𝑧 𝑥 = 𝑧 → ∀ 𝑧 𝜓 ) ) |
| 21 |
2
|
nf5i |
⊢ Ⅎ 𝑥 𝜓 |
| 22 |
|
nfv |
⊢ Ⅎ 𝑧 𝜑 |
| 23 |
1
|
biimprd |
⊢ ( 𝑥 = 𝑧 → ( 𝜓 → 𝜑 ) ) |
| 24 |
16 23
|
syl |
⊢ ( 𝑧 = 𝑥 → ( 𝜓 → 𝜑 ) ) |
| 25 |
21 22 24
|
cbv3 |
⊢ ( ∀ 𝑧 𝜓 → ∀ 𝑥 𝜑 ) |
| 26 |
20 25
|
syl6com |
⊢ ( ∀ 𝑧 𝑥 = 𝑧 → ( 𝜑 → ∀ 𝑥 𝜑 ) ) |
| 27 |
6 18 26
|
3syl |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( 𝜑 → ∀ 𝑥 𝜑 ) ) |