Metamath Proof Explorer


Theorem axc4i

Description: Inference version of axc4 . (Contributed by NM, 3-Jan-1993)

Ref Expression
Hypothesis axc4i.1 ( ∀ 𝑥 𝜑𝜓 )
Assertion axc4i ( ∀ 𝑥 𝜑 → ∀ 𝑥 𝜓 )

Proof

Step Hyp Ref Expression
1 axc4i.1 ( ∀ 𝑥 𝜑𝜓 )
2 nfa1 𝑥𝑥 𝜑
3 2 1 alrimi ( ∀ 𝑥 𝜑 → ∀ 𝑥 𝜓 )