Metamath Proof Explorer


Theorem axc5c7

Description: Proof of a single axiom that can replace ax-c5 and ax-c7 . See axc5c7toc5 and axc5c7toc7 for the rederivation of those axioms. (Contributed by Scott Fenton, 12-Sep-2005) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion axc5c7 ( ( ∀ 𝑥 ¬ ∀ 𝑥 𝜑 → ∀ 𝑥 𝜑 ) → 𝜑 )

Proof

Step Hyp Ref Expression
1 ax-c7 ( ¬ ∀ 𝑥 ¬ ∀ 𝑥 𝜑𝜑 )
2 ax-c5 ( ∀ 𝑥 𝜑𝜑 )
3 1 2 ja ( ( ∀ 𝑥 ¬ ∀ 𝑥 𝜑 → ∀ 𝑥 𝜑 ) → 𝜑 )