Metamath Proof Explorer


Theorem axc5c711

Description: Proof of a single axiom that can replace ax-c5 , ax-c7 , and ax-11 in a subsystem that includes these axioms plus ax-c4 and ax-gen (and propositional calculus). See axc5c711toc5 , axc5c711toc7 , and axc5c711to11 for the rederivation of those axioms. This theorem extends the idea in Scott Fenton's axc5c7 . (Contributed by NM, 18-Nov-2006) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion axc5c711 ( ( ∀ 𝑥𝑦 ¬ ∀ 𝑥𝑦 𝜑 → ∀ 𝑥 𝜑 ) → 𝜑 )

Proof

Step Hyp Ref Expression
1 ax-c5 ( ∀ 𝑦 𝜑𝜑 )
2 ax10fromc7 ( ¬ ∀ 𝑦 𝜑 → ∀ 𝑦 ¬ ∀ 𝑦 𝜑 )
3 ax-c7 ( ¬ ∀ 𝑥 ¬ ∀ 𝑥𝑦 𝜑 → ∀ 𝑦 𝜑 )
4 3 con1i ( ¬ ∀ 𝑦 𝜑 → ∀ 𝑥 ¬ ∀ 𝑥𝑦 𝜑 )
5 4 alimi ( ∀ 𝑦 ¬ ∀ 𝑦 𝜑 → ∀ 𝑦𝑥 ¬ ∀ 𝑥𝑦 𝜑 )
6 ax-11 ( ∀ 𝑦𝑥 ¬ ∀ 𝑥𝑦 𝜑 → ∀ 𝑥𝑦 ¬ ∀ 𝑥𝑦 𝜑 )
7 2 5 6 3syl ( ¬ ∀ 𝑦 𝜑 → ∀ 𝑥𝑦 ¬ ∀ 𝑥𝑦 𝜑 )
8 1 7 nsyl4 ( ¬ ∀ 𝑥𝑦 ¬ ∀ 𝑥𝑦 𝜑𝜑 )
9 ax-c5 ( ∀ 𝑥 𝜑𝜑 )
10 8 9 ja ( ( ∀ 𝑥𝑦 ¬ ∀ 𝑥𝑦 𝜑 → ∀ 𝑥 𝜑 ) → 𝜑 )