Metamath Proof Explorer


Theorem axc5c711toc5

Description: Rederivation of ax-c5 from axc5c711 . Only propositional calculus is used by the rederivation. (Contributed by NM, 19-Nov-2006) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion axc5c711toc5 ( ∀ 𝑥 𝜑𝜑 )

Proof

Step Hyp Ref Expression
1 ax-1 ( ∀ 𝑥 𝜑 → ( ∀ 𝑥𝑥 ¬ ∀ 𝑥𝑥 𝜑 → ∀ 𝑥 𝜑 ) )
2 axc5c711 ( ( ∀ 𝑥𝑥 ¬ ∀ 𝑥𝑥 𝜑 → ∀ 𝑥 𝜑 ) → 𝜑 )
3 1 2 syl ( ∀ 𝑥 𝜑𝜑 )