Metamath Proof Explorer


Theorem axc711toc7

Description: Rederivation of ax-c7 from axc711 . Note that ax-c7 and ax-11 are not used by the rederivation. (Contributed by NM, 18-Nov-2006) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion axc711toc7 ( ¬ ∀ 𝑥 ¬ ∀ 𝑥 𝜑𝜑 )

Proof

Step Hyp Ref Expression
1 hba1-o ( ∀ 𝑥 𝜑 → ∀ 𝑥𝑥 𝜑 )
2 1 con3i ( ¬ ∀ 𝑥𝑥 𝜑 → ¬ ∀ 𝑥 𝜑 )
3 2 alimi ( ∀ 𝑥 ¬ ∀ 𝑥𝑥 𝜑 → ∀ 𝑥 ¬ ∀ 𝑥 𝜑 )
4 3 con3i ( ¬ ∀ 𝑥 ¬ ∀ 𝑥 𝜑 → ¬ ∀ 𝑥 ¬ ∀ 𝑥𝑥 𝜑 )
5 axc711 ( ¬ ∀ 𝑥 ¬ ∀ 𝑥𝑥 𝜑 → ∀ 𝑥 𝜑 )
6 ax-c5 ( ∀ 𝑥 𝜑𝜑 )
7 4 5 6 3syl ( ¬ ∀ 𝑥 ¬ ∀ 𝑥 𝜑𝜑 )