Metamath Proof Explorer


Theorem axc7e

Description: Abbreviated version of axc7 using the existential quantifier. Corresponds to the dual of Axiom (B) of modal logic. (Contributed by NM, 5-Aug-1993) (Proof shortened by Wolf Lammen, 8-Jul-2022)

Ref Expression
Assertion axc7e ( ∃ 𝑥𝑥 𝜑𝜑 )

Proof

Step Hyp Ref Expression
1 hbe1a ( ∃ 𝑥𝑥 𝜑 → ∀ 𝑥 𝜑 )
2 1 19.21bi ( ∃ 𝑥𝑥 𝜑𝜑 )