| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nfcv |
⊢ Ⅎ 𝑛 if ( ( 𝐹 ‘ 𝑚 ) = ∅ , { ∅ } , ( 𝐹 ‘ 𝑚 ) ) |
| 2 |
|
nfcv |
⊢ Ⅎ 𝑚 if ( ( 𝐹 ‘ 𝑛 ) = ∅ , { ∅ } , ( 𝐹 ‘ 𝑛 ) ) |
| 3 |
|
fveqeq2 |
⊢ ( 𝑚 = 𝑛 → ( ( 𝐹 ‘ 𝑚 ) = ∅ ↔ ( 𝐹 ‘ 𝑛 ) = ∅ ) ) |
| 4 |
|
fveq2 |
⊢ ( 𝑚 = 𝑛 → ( 𝐹 ‘ 𝑚 ) = ( 𝐹 ‘ 𝑛 ) ) |
| 5 |
3 4
|
ifbieq2d |
⊢ ( 𝑚 = 𝑛 → if ( ( 𝐹 ‘ 𝑚 ) = ∅ , { ∅ } , ( 𝐹 ‘ 𝑚 ) ) = if ( ( 𝐹 ‘ 𝑛 ) = ∅ , { ∅ } , ( 𝐹 ‘ 𝑛 ) ) ) |
| 6 |
1 2 5
|
cbvmpt |
⊢ ( 𝑚 ∈ ω ↦ if ( ( 𝐹 ‘ 𝑚 ) = ∅ , { ∅ } , ( 𝐹 ‘ 𝑚 ) ) ) = ( 𝑛 ∈ ω ↦ if ( ( 𝐹 ‘ 𝑛 ) = ∅ , { ∅ } , ( 𝐹 ‘ 𝑛 ) ) ) |
| 7 |
|
nfcv |
⊢ Ⅎ 𝑛 ( { 𝑚 } × ( ( 𝑚 ∈ ω ↦ if ( ( 𝐹 ‘ 𝑚 ) = ∅ , { ∅ } , ( 𝐹 ‘ 𝑚 ) ) ) ‘ 𝑚 ) ) |
| 8 |
|
nfcv |
⊢ Ⅎ 𝑚 { 𝑛 } |
| 9 |
|
nffvmpt1 |
⊢ Ⅎ 𝑚 ( ( 𝑚 ∈ ω ↦ if ( ( 𝐹 ‘ 𝑚 ) = ∅ , { ∅ } , ( 𝐹 ‘ 𝑚 ) ) ) ‘ 𝑛 ) |
| 10 |
8 9
|
nfxp |
⊢ Ⅎ 𝑚 ( { 𝑛 } × ( ( 𝑚 ∈ ω ↦ if ( ( 𝐹 ‘ 𝑚 ) = ∅ , { ∅ } , ( 𝐹 ‘ 𝑚 ) ) ) ‘ 𝑛 ) ) |
| 11 |
|
sneq |
⊢ ( 𝑚 = 𝑛 → { 𝑚 } = { 𝑛 } ) |
| 12 |
|
fveq2 |
⊢ ( 𝑚 = 𝑛 → ( ( 𝑚 ∈ ω ↦ if ( ( 𝐹 ‘ 𝑚 ) = ∅ , { ∅ } , ( 𝐹 ‘ 𝑚 ) ) ) ‘ 𝑚 ) = ( ( 𝑚 ∈ ω ↦ if ( ( 𝐹 ‘ 𝑚 ) = ∅ , { ∅ } , ( 𝐹 ‘ 𝑚 ) ) ) ‘ 𝑛 ) ) |
| 13 |
11 12
|
xpeq12d |
⊢ ( 𝑚 = 𝑛 → ( { 𝑚 } × ( ( 𝑚 ∈ ω ↦ if ( ( 𝐹 ‘ 𝑚 ) = ∅ , { ∅ } , ( 𝐹 ‘ 𝑚 ) ) ) ‘ 𝑚 ) ) = ( { 𝑛 } × ( ( 𝑚 ∈ ω ↦ if ( ( 𝐹 ‘ 𝑚 ) = ∅ , { ∅ } , ( 𝐹 ‘ 𝑚 ) ) ) ‘ 𝑛 ) ) ) |
| 14 |
7 10 13
|
cbvmpt |
⊢ ( 𝑚 ∈ ω ↦ ( { 𝑚 } × ( ( 𝑚 ∈ ω ↦ if ( ( 𝐹 ‘ 𝑚 ) = ∅ , { ∅ } , ( 𝐹 ‘ 𝑚 ) ) ) ‘ 𝑚 ) ) ) = ( 𝑛 ∈ ω ↦ ( { 𝑛 } × ( ( 𝑚 ∈ ω ↦ if ( ( 𝐹 ‘ 𝑚 ) = ∅ , { ∅ } , ( 𝐹 ‘ 𝑚 ) ) ) ‘ 𝑛 ) ) ) |
| 15 |
|
nfcv |
⊢ Ⅎ 𝑛 ( 2nd ‘ ( 𝑓 ‘ ( ( 𝑚 ∈ ω ↦ ( { 𝑚 } × ( ( 𝑚 ∈ ω ↦ if ( ( 𝐹 ‘ 𝑚 ) = ∅ , { ∅ } , ( 𝐹 ‘ 𝑚 ) ) ) ‘ 𝑚 ) ) ) ‘ 𝑚 ) ) ) |
| 16 |
|
nfcv |
⊢ Ⅎ 𝑚 2nd |
| 17 |
|
nfcv |
⊢ Ⅎ 𝑚 𝑓 |
| 18 |
|
nffvmpt1 |
⊢ Ⅎ 𝑚 ( ( 𝑚 ∈ ω ↦ ( { 𝑚 } × ( ( 𝑚 ∈ ω ↦ if ( ( 𝐹 ‘ 𝑚 ) = ∅ , { ∅ } , ( 𝐹 ‘ 𝑚 ) ) ) ‘ 𝑚 ) ) ) ‘ 𝑛 ) |
| 19 |
17 18
|
nffv |
⊢ Ⅎ 𝑚 ( 𝑓 ‘ ( ( 𝑚 ∈ ω ↦ ( { 𝑚 } × ( ( 𝑚 ∈ ω ↦ if ( ( 𝐹 ‘ 𝑚 ) = ∅ , { ∅ } , ( 𝐹 ‘ 𝑚 ) ) ) ‘ 𝑚 ) ) ) ‘ 𝑛 ) ) |
| 20 |
16 19
|
nffv |
⊢ Ⅎ 𝑚 ( 2nd ‘ ( 𝑓 ‘ ( ( 𝑚 ∈ ω ↦ ( { 𝑚 } × ( ( 𝑚 ∈ ω ↦ if ( ( 𝐹 ‘ 𝑚 ) = ∅ , { ∅ } , ( 𝐹 ‘ 𝑚 ) ) ) ‘ 𝑚 ) ) ) ‘ 𝑛 ) ) ) |
| 21 |
|
2fveq3 |
⊢ ( 𝑚 = 𝑛 → ( 𝑓 ‘ ( ( 𝑚 ∈ ω ↦ ( { 𝑚 } × ( ( 𝑚 ∈ ω ↦ if ( ( 𝐹 ‘ 𝑚 ) = ∅ , { ∅ } , ( 𝐹 ‘ 𝑚 ) ) ) ‘ 𝑚 ) ) ) ‘ 𝑚 ) ) = ( 𝑓 ‘ ( ( 𝑚 ∈ ω ↦ ( { 𝑚 } × ( ( 𝑚 ∈ ω ↦ if ( ( 𝐹 ‘ 𝑚 ) = ∅ , { ∅ } , ( 𝐹 ‘ 𝑚 ) ) ) ‘ 𝑚 ) ) ) ‘ 𝑛 ) ) ) |
| 22 |
21
|
fveq2d |
⊢ ( 𝑚 = 𝑛 → ( 2nd ‘ ( 𝑓 ‘ ( ( 𝑚 ∈ ω ↦ ( { 𝑚 } × ( ( 𝑚 ∈ ω ↦ if ( ( 𝐹 ‘ 𝑚 ) = ∅ , { ∅ } , ( 𝐹 ‘ 𝑚 ) ) ) ‘ 𝑚 ) ) ) ‘ 𝑚 ) ) ) = ( 2nd ‘ ( 𝑓 ‘ ( ( 𝑚 ∈ ω ↦ ( { 𝑚 } × ( ( 𝑚 ∈ ω ↦ if ( ( 𝐹 ‘ 𝑚 ) = ∅ , { ∅ } , ( 𝐹 ‘ 𝑚 ) ) ) ‘ 𝑚 ) ) ) ‘ 𝑛 ) ) ) ) |
| 23 |
15 20 22
|
cbvmpt |
⊢ ( 𝑚 ∈ ω ↦ ( 2nd ‘ ( 𝑓 ‘ ( ( 𝑚 ∈ ω ↦ ( { 𝑚 } × ( ( 𝑚 ∈ ω ↦ if ( ( 𝐹 ‘ 𝑚 ) = ∅ , { ∅ } , ( 𝐹 ‘ 𝑚 ) ) ) ‘ 𝑚 ) ) ) ‘ 𝑚 ) ) ) ) = ( 𝑛 ∈ ω ↦ ( 2nd ‘ ( 𝑓 ‘ ( ( 𝑚 ∈ ω ↦ ( { 𝑚 } × ( ( 𝑚 ∈ ω ↦ if ( ( 𝐹 ‘ 𝑚 ) = ∅ , { ∅ } , ( 𝐹 ‘ 𝑚 ) ) ) ‘ 𝑚 ) ) ) ‘ 𝑛 ) ) ) ) |
| 24 |
6 14 23
|
axcc2lem |
⊢ ∃ 𝑔 ( 𝑔 Fn ω ∧ ∀ 𝑛 ∈ ω ( ( 𝐹 ‘ 𝑛 ) ≠ ∅ → ( 𝑔 ‘ 𝑛 ) ∈ ( 𝐹 ‘ 𝑛 ) ) ) |