Step |
Hyp |
Ref |
Expression |
1 |
|
nfcv |
⊢ Ⅎ 𝑛 if ( ( 𝐹 ‘ 𝑚 ) = ∅ , { ∅ } , ( 𝐹 ‘ 𝑚 ) ) |
2 |
|
nfcv |
⊢ Ⅎ 𝑚 if ( ( 𝐹 ‘ 𝑛 ) = ∅ , { ∅ } , ( 𝐹 ‘ 𝑛 ) ) |
3 |
|
fveqeq2 |
⊢ ( 𝑚 = 𝑛 → ( ( 𝐹 ‘ 𝑚 ) = ∅ ↔ ( 𝐹 ‘ 𝑛 ) = ∅ ) ) |
4 |
|
fveq2 |
⊢ ( 𝑚 = 𝑛 → ( 𝐹 ‘ 𝑚 ) = ( 𝐹 ‘ 𝑛 ) ) |
5 |
3 4
|
ifbieq2d |
⊢ ( 𝑚 = 𝑛 → if ( ( 𝐹 ‘ 𝑚 ) = ∅ , { ∅ } , ( 𝐹 ‘ 𝑚 ) ) = if ( ( 𝐹 ‘ 𝑛 ) = ∅ , { ∅ } , ( 𝐹 ‘ 𝑛 ) ) ) |
6 |
1 2 5
|
cbvmpt |
⊢ ( 𝑚 ∈ ω ↦ if ( ( 𝐹 ‘ 𝑚 ) = ∅ , { ∅ } , ( 𝐹 ‘ 𝑚 ) ) ) = ( 𝑛 ∈ ω ↦ if ( ( 𝐹 ‘ 𝑛 ) = ∅ , { ∅ } , ( 𝐹 ‘ 𝑛 ) ) ) |
7 |
|
nfcv |
⊢ Ⅎ 𝑛 ( { 𝑚 } × ( ( 𝑚 ∈ ω ↦ if ( ( 𝐹 ‘ 𝑚 ) = ∅ , { ∅ } , ( 𝐹 ‘ 𝑚 ) ) ) ‘ 𝑚 ) ) |
8 |
|
nfcv |
⊢ Ⅎ 𝑚 { 𝑛 } |
9 |
|
nffvmpt1 |
⊢ Ⅎ 𝑚 ( ( 𝑚 ∈ ω ↦ if ( ( 𝐹 ‘ 𝑚 ) = ∅ , { ∅ } , ( 𝐹 ‘ 𝑚 ) ) ) ‘ 𝑛 ) |
10 |
8 9
|
nfxp |
⊢ Ⅎ 𝑚 ( { 𝑛 } × ( ( 𝑚 ∈ ω ↦ if ( ( 𝐹 ‘ 𝑚 ) = ∅ , { ∅ } , ( 𝐹 ‘ 𝑚 ) ) ) ‘ 𝑛 ) ) |
11 |
|
sneq |
⊢ ( 𝑚 = 𝑛 → { 𝑚 } = { 𝑛 } ) |
12 |
|
fveq2 |
⊢ ( 𝑚 = 𝑛 → ( ( 𝑚 ∈ ω ↦ if ( ( 𝐹 ‘ 𝑚 ) = ∅ , { ∅ } , ( 𝐹 ‘ 𝑚 ) ) ) ‘ 𝑚 ) = ( ( 𝑚 ∈ ω ↦ if ( ( 𝐹 ‘ 𝑚 ) = ∅ , { ∅ } , ( 𝐹 ‘ 𝑚 ) ) ) ‘ 𝑛 ) ) |
13 |
11 12
|
xpeq12d |
⊢ ( 𝑚 = 𝑛 → ( { 𝑚 } × ( ( 𝑚 ∈ ω ↦ if ( ( 𝐹 ‘ 𝑚 ) = ∅ , { ∅ } , ( 𝐹 ‘ 𝑚 ) ) ) ‘ 𝑚 ) ) = ( { 𝑛 } × ( ( 𝑚 ∈ ω ↦ if ( ( 𝐹 ‘ 𝑚 ) = ∅ , { ∅ } , ( 𝐹 ‘ 𝑚 ) ) ) ‘ 𝑛 ) ) ) |
14 |
7 10 13
|
cbvmpt |
⊢ ( 𝑚 ∈ ω ↦ ( { 𝑚 } × ( ( 𝑚 ∈ ω ↦ if ( ( 𝐹 ‘ 𝑚 ) = ∅ , { ∅ } , ( 𝐹 ‘ 𝑚 ) ) ) ‘ 𝑚 ) ) ) = ( 𝑛 ∈ ω ↦ ( { 𝑛 } × ( ( 𝑚 ∈ ω ↦ if ( ( 𝐹 ‘ 𝑚 ) = ∅ , { ∅ } , ( 𝐹 ‘ 𝑚 ) ) ) ‘ 𝑛 ) ) ) |
15 |
|
nfcv |
⊢ Ⅎ 𝑛 ( 2nd ‘ ( 𝑓 ‘ ( ( 𝑚 ∈ ω ↦ ( { 𝑚 } × ( ( 𝑚 ∈ ω ↦ if ( ( 𝐹 ‘ 𝑚 ) = ∅ , { ∅ } , ( 𝐹 ‘ 𝑚 ) ) ) ‘ 𝑚 ) ) ) ‘ 𝑚 ) ) ) |
16 |
|
nfcv |
⊢ Ⅎ 𝑚 2nd |
17 |
|
nfcv |
⊢ Ⅎ 𝑚 𝑓 |
18 |
|
nffvmpt1 |
⊢ Ⅎ 𝑚 ( ( 𝑚 ∈ ω ↦ ( { 𝑚 } × ( ( 𝑚 ∈ ω ↦ if ( ( 𝐹 ‘ 𝑚 ) = ∅ , { ∅ } , ( 𝐹 ‘ 𝑚 ) ) ) ‘ 𝑚 ) ) ) ‘ 𝑛 ) |
19 |
17 18
|
nffv |
⊢ Ⅎ 𝑚 ( 𝑓 ‘ ( ( 𝑚 ∈ ω ↦ ( { 𝑚 } × ( ( 𝑚 ∈ ω ↦ if ( ( 𝐹 ‘ 𝑚 ) = ∅ , { ∅ } , ( 𝐹 ‘ 𝑚 ) ) ) ‘ 𝑚 ) ) ) ‘ 𝑛 ) ) |
20 |
16 19
|
nffv |
⊢ Ⅎ 𝑚 ( 2nd ‘ ( 𝑓 ‘ ( ( 𝑚 ∈ ω ↦ ( { 𝑚 } × ( ( 𝑚 ∈ ω ↦ if ( ( 𝐹 ‘ 𝑚 ) = ∅ , { ∅ } , ( 𝐹 ‘ 𝑚 ) ) ) ‘ 𝑚 ) ) ) ‘ 𝑛 ) ) ) |
21 |
|
2fveq3 |
⊢ ( 𝑚 = 𝑛 → ( 𝑓 ‘ ( ( 𝑚 ∈ ω ↦ ( { 𝑚 } × ( ( 𝑚 ∈ ω ↦ if ( ( 𝐹 ‘ 𝑚 ) = ∅ , { ∅ } , ( 𝐹 ‘ 𝑚 ) ) ) ‘ 𝑚 ) ) ) ‘ 𝑚 ) ) = ( 𝑓 ‘ ( ( 𝑚 ∈ ω ↦ ( { 𝑚 } × ( ( 𝑚 ∈ ω ↦ if ( ( 𝐹 ‘ 𝑚 ) = ∅ , { ∅ } , ( 𝐹 ‘ 𝑚 ) ) ) ‘ 𝑚 ) ) ) ‘ 𝑛 ) ) ) |
22 |
21
|
fveq2d |
⊢ ( 𝑚 = 𝑛 → ( 2nd ‘ ( 𝑓 ‘ ( ( 𝑚 ∈ ω ↦ ( { 𝑚 } × ( ( 𝑚 ∈ ω ↦ if ( ( 𝐹 ‘ 𝑚 ) = ∅ , { ∅ } , ( 𝐹 ‘ 𝑚 ) ) ) ‘ 𝑚 ) ) ) ‘ 𝑚 ) ) ) = ( 2nd ‘ ( 𝑓 ‘ ( ( 𝑚 ∈ ω ↦ ( { 𝑚 } × ( ( 𝑚 ∈ ω ↦ if ( ( 𝐹 ‘ 𝑚 ) = ∅ , { ∅ } , ( 𝐹 ‘ 𝑚 ) ) ) ‘ 𝑚 ) ) ) ‘ 𝑛 ) ) ) ) |
23 |
15 20 22
|
cbvmpt |
⊢ ( 𝑚 ∈ ω ↦ ( 2nd ‘ ( 𝑓 ‘ ( ( 𝑚 ∈ ω ↦ ( { 𝑚 } × ( ( 𝑚 ∈ ω ↦ if ( ( 𝐹 ‘ 𝑚 ) = ∅ , { ∅ } , ( 𝐹 ‘ 𝑚 ) ) ) ‘ 𝑚 ) ) ) ‘ 𝑚 ) ) ) ) = ( 𝑛 ∈ ω ↦ ( 2nd ‘ ( 𝑓 ‘ ( ( 𝑚 ∈ ω ↦ ( { 𝑚 } × ( ( 𝑚 ∈ ω ↦ if ( ( 𝐹 ‘ 𝑚 ) = ∅ , { ∅ } , ( 𝐹 ‘ 𝑚 ) ) ) ‘ 𝑚 ) ) ) ‘ 𝑛 ) ) ) ) |
24 |
6 14 23
|
axcc2lem |
⊢ ∃ 𝑔 ( 𝑔 Fn ω ∧ ∀ 𝑛 ∈ ω ( ( 𝐹 ‘ 𝑛 ) ≠ ∅ → ( 𝑔 ‘ 𝑛 ) ∈ ( 𝐹 ‘ 𝑛 ) ) ) |