| Step |
Hyp |
Ref |
Expression |
| 1 |
|
axcc3.1 |
⊢ 𝐹 ∈ V |
| 2 |
|
axcc3.2 |
⊢ 𝑁 ≈ ω |
| 3 |
|
relen |
⊢ Rel ≈ |
| 4 |
3
|
brrelex1i |
⊢ ( 𝑁 ≈ ω → 𝑁 ∈ V ) |
| 5 |
|
mptexg |
⊢ ( 𝑁 ∈ V → ( 𝑛 ∈ 𝑁 ↦ 𝐹 ) ∈ V ) |
| 6 |
2 4 5
|
mp2b |
⊢ ( 𝑛 ∈ 𝑁 ↦ 𝐹 ) ∈ V |
| 7 |
|
bren |
⊢ ( 𝑁 ≈ ω ↔ ∃ ℎ ℎ : 𝑁 –1-1-onto→ ω ) |
| 8 |
2 7
|
mpbi |
⊢ ∃ ℎ ℎ : 𝑁 –1-1-onto→ ω |
| 9 |
|
axcc2 |
⊢ ∃ 𝑔 ( 𝑔 Fn ω ∧ ∀ 𝑚 ∈ ω ( ( ( 𝑘 ∘ ◡ ℎ ) ‘ 𝑚 ) ≠ ∅ → ( 𝑔 ‘ 𝑚 ) ∈ ( ( 𝑘 ∘ ◡ ℎ ) ‘ 𝑚 ) ) ) |
| 10 |
|
f1of |
⊢ ( ℎ : 𝑁 –1-1-onto→ ω → ℎ : 𝑁 ⟶ ω ) |
| 11 |
|
fnfco |
⊢ ( ( 𝑔 Fn ω ∧ ℎ : 𝑁 ⟶ ω ) → ( 𝑔 ∘ ℎ ) Fn 𝑁 ) |
| 12 |
10 11
|
sylan2 |
⊢ ( ( 𝑔 Fn ω ∧ ℎ : 𝑁 –1-1-onto→ ω ) → ( 𝑔 ∘ ℎ ) Fn 𝑁 ) |
| 13 |
12
|
adantlr |
⊢ ( ( ( 𝑔 Fn ω ∧ ∀ 𝑚 ∈ ω ( ( ( 𝑘 ∘ ◡ ℎ ) ‘ 𝑚 ) ≠ ∅ → ( 𝑔 ‘ 𝑚 ) ∈ ( ( 𝑘 ∘ ◡ ℎ ) ‘ 𝑚 ) ) ) ∧ ℎ : 𝑁 –1-1-onto→ ω ) → ( 𝑔 ∘ ℎ ) Fn 𝑁 ) |
| 14 |
13
|
3adant1 |
⊢ ( ( 𝑘 = ( 𝑛 ∈ 𝑁 ↦ 𝐹 ) ∧ ( 𝑔 Fn ω ∧ ∀ 𝑚 ∈ ω ( ( ( 𝑘 ∘ ◡ ℎ ) ‘ 𝑚 ) ≠ ∅ → ( 𝑔 ‘ 𝑚 ) ∈ ( ( 𝑘 ∘ ◡ ℎ ) ‘ 𝑚 ) ) ) ∧ ℎ : 𝑁 –1-1-onto→ ω ) → ( 𝑔 ∘ ℎ ) Fn 𝑁 ) |
| 15 |
|
nfmpt1 |
⊢ Ⅎ 𝑛 ( 𝑛 ∈ 𝑁 ↦ 𝐹 ) |
| 16 |
15
|
nfeq2 |
⊢ Ⅎ 𝑛 𝑘 = ( 𝑛 ∈ 𝑁 ↦ 𝐹 ) |
| 17 |
|
nfv |
⊢ Ⅎ 𝑛 ( 𝑔 Fn ω ∧ ∀ 𝑚 ∈ ω ( ( ( 𝑘 ∘ ◡ ℎ ) ‘ 𝑚 ) ≠ ∅ → ( 𝑔 ‘ 𝑚 ) ∈ ( ( 𝑘 ∘ ◡ ℎ ) ‘ 𝑚 ) ) ) |
| 18 |
|
nfv |
⊢ Ⅎ 𝑛 ℎ : 𝑁 –1-1-onto→ ω |
| 19 |
16 17 18
|
nf3an |
⊢ Ⅎ 𝑛 ( 𝑘 = ( 𝑛 ∈ 𝑁 ↦ 𝐹 ) ∧ ( 𝑔 Fn ω ∧ ∀ 𝑚 ∈ ω ( ( ( 𝑘 ∘ ◡ ℎ ) ‘ 𝑚 ) ≠ ∅ → ( 𝑔 ‘ 𝑚 ) ∈ ( ( 𝑘 ∘ ◡ ℎ ) ‘ 𝑚 ) ) ) ∧ ℎ : 𝑁 –1-1-onto→ ω ) |
| 20 |
10
|
ffvelcdmda |
⊢ ( ( ℎ : 𝑁 –1-1-onto→ ω ∧ 𝑛 ∈ 𝑁 ) → ( ℎ ‘ 𝑛 ) ∈ ω ) |
| 21 |
|
fveq2 |
⊢ ( 𝑚 = ( ℎ ‘ 𝑛 ) → ( ( 𝑘 ∘ ◡ ℎ ) ‘ 𝑚 ) = ( ( 𝑘 ∘ ◡ ℎ ) ‘ ( ℎ ‘ 𝑛 ) ) ) |
| 22 |
21
|
neeq1d |
⊢ ( 𝑚 = ( ℎ ‘ 𝑛 ) → ( ( ( 𝑘 ∘ ◡ ℎ ) ‘ 𝑚 ) ≠ ∅ ↔ ( ( 𝑘 ∘ ◡ ℎ ) ‘ ( ℎ ‘ 𝑛 ) ) ≠ ∅ ) ) |
| 23 |
|
fveq2 |
⊢ ( 𝑚 = ( ℎ ‘ 𝑛 ) → ( 𝑔 ‘ 𝑚 ) = ( 𝑔 ‘ ( ℎ ‘ 𝑛 ) ) ) |
| 24 |
23 21
|
eleq12d |
⊢ ( 𝑚 = ( ℎ ‘ 𝑛 ) → ( ( 𝑔 ‘ 𝑚 ) ∈ ( ( 𝑘 ∘ ◡ ℎ ) ‘ 𝑚 ) ↔ ( 𝑔 ‘ ( ℎ ‘ 𝑛 ) ) ∈ ( ( 𝑘 ∘ ◡ ℎ ) ‘ ( ℎ ‘ 𝑛 ) ) ) ) |
| 25 |
22 24
|
imbi12d |
⊢ ( 𝑚 = ( ℎ ‘ 𝑛 ) → ( ( ( ( 𝑘 ∘ ◡ ℎ ) ‘ 𝑚 ) ≠ ∅ → ( 𝑔 ‘ 𝑚 ) ∈ ( ( 𝑘 ∘ ◡ ℎ ) ‘ 𝑚 ) ) ↔ ( ( ( 𝑘 ∘ ◡ ℎ ) ‘ ( ℎ ‘ 𝑛 ) ) ≠ ∅ → ( 𝑔 ‘ ( ℎ ‘ 𝑛 ) ) ∈ ( ( 𝑘 ∘ ◡ ℎ ) ‘ ( ℎ ‘ 𝑛 ) ) ) ) ) |
| 26 |
25
|
rspcv |
⊢ ( ( ℎ ‘ 𝑛 ) ∈ ω → ( ∀ 𝑚 ∈ ω ( ( ( 𝑘 ∘ ◡ ℎ ) ‘ 𝑚 ) ≠ ∅ → ( 𝑔 ‘ 𝑚 ) ∈ ( ( 𝑘 ∘ ◡ ℎ ) ‘ 𝑚 ) ) → ( ( ( 𝑘 ∘ ◡ ℎ ) ‘ ( ℎ ‘ 𝑛 ) ) ≠ ∅ → ( 𝑔 ‘ ( ℎ ‘ 𝑛 ) ) ∈ ( ( 𝑘 ∘ ◡ ℎ ) ‘ ( ℎ ‘ 𝑛 ) ) ) ) ) |
| 27 |
20 26
|
syl |
⊢ ( ( ℎ : 𝑁 –1-1-onto→ ω ∧ 𝑛 ∈ 𝑁 ) → ( ∀ 𝑚 ∈ ω ( ( ( 𝑘 ∘ ◡ ℎ ) ‘ 𝑚 ) ≠ ∅ → ( 𝑔 ‘ 𝑚 ) ∈ ( ( 𝑘 ∘ ◡ ℎ ) ‘ 𝑚 ) ) → ( ( ( 𝑘 ∘ ◡ ℎ ) ‘ ( ℎ ‘ 𝑛 ) ) ≠ ∅ → ( 𝑔 ‘ ( ℎ ‘ 𝑛 ) ) ∈ ( ( 𝑘 ∘ ◡ ℎ ) ‘ ( ℎ ‘ 𝑛 ) ) ) ) ) |
| 28 |
27
|
3ad2antl3 |
⊢ ( ( ( 𝑘 = ( 𝑛 ∈ 𝑁 ↦ 𝐹 ) ∧ 𝑔 Fn ω ∧ ℎ : 𝑁 –1-1-onto→ ω ) ∧ 𝑛 ∈ 𝑁 ) → ( ∀ 𝑚 ∈ ω ( ( ( 𝑘 ∘ ◡ ℎ ) ‘ 𝑚 ) ≠ ∅ → ( 𝑔 ‘ 𝑚 ) ∈ ( ( 𝑘 ∘ ◡ ℎ ) ‘ 𝑚 ) ) → ( ( ( 𝑘 ∘ ◡ ℎ ) ‘ ( ℎ ‘ 𝑛 ) ) ≠ ∅ → ( 𝑔 ‘ ( ℎ ‘ 𝑛 ) ) ∈ ( ( 𝑘 ∘ ◡ ℎ ) ‘ ( ℎ ‘ 𝑛 ) ) ) ) ) |
| 29 |
|
f1ocnv |
⊢ ( ℎ : 𝑁 –1-1-onto→ ω → ◡ ℎ : ω –1-1-onto→ 𝑁 ) |
| 30 |
|
f1of |
⊢ ( ◡ ℎ : ω –1-1-onto→ 𝑁 → ◡ ℎ : ω ⟶ 𝑁 ) |
| 31 |
29 30
|
syl |
⊢ ( ℎ : 𝑁 –1-1-onto→ ω → ◡ ℎ : ω ⟶ 𝑁 ) |
| 32 |
|
fvco3 |
⊢ ( ( ◡ ℎ : ω ⟶ 𝑁 ∧ ( ℎ ‘ 𝑛 ) ∈ ω ) → ( ( 𝑘 ∘ ◡ ℎ ) ‘ ( ℎ ‘ 𝑛 ) ) = ( 𝑘 ‘ ( ◡ ℎ ‘ ( ℎ ‘ 𝑛 ) ) ) ) |
| 33 |
31 20 32
|
syl2an2r |
⊢ ( ( ℎ : 𝑁 –1-1-onto→ ω ∧ 𝑛 ∈ 𝑁 ) → ( ( 𝑘 ∘ ◡ ℎ ) ‘ ( ℎ ‘ 𝑛 ) ) = ( 𝑘 ‘ ( ◡ ℎ ‘ ( ℎ ‘ 𝑛 ) ) ) ) |
| 34 |
33
|
3adant1 |
⊢ ( ( 𝑘 = ( 𝑛 ∈ 𝑁 ↦ 𝐹 ) ∧ ℎ : 𝑁 –1-1-onto→ ω ∧ 𝑛 ∈ 𝑁 ) → ( ( 𝑘 ∘ ◡ ℎ ) ‘ ( ℎ ‘ 𝑛 ) ) = ( 𝑘 ‘ ( ◡ ℎ ‘ ( ℎ ‘ 𝑛 ) ) ) ) |
| 35 |
|
f1ocnvfv1 |
⊢ ( ( ℎ : 𝑁 –1-1-onto→ ω ∧ 𝑛 ∈ 𝑁 ) → ( ◡ ℎ ‘ ( ℎ ‘ 𝑛 ) ) = 𝑛 ) |
| 36 |
35
|
fveq2d |
⊢ ( ( ℎ : 𝑁 –1-1-onto→ ω ∧ 𝑛 ∈ 𝑁 ) → ( 𝑘 ‘ ( ◡ ℎ ‘ ( ℎ ‘ 𝑛 ) ) ) = ( 𝑘 ‘ 𝑛 ) ) |
| 37 |
36
|
3adant1 |
⊢ ( ( 𝑘 = ( 𝑛 ∈ 𝑁 ↦ 𝐹 ) ∧ ℎ : 𝑁 –1-1-onto→ ω ∧ 𝑛 ∈ 𝑁 ) → ( 𝑘 ‘ ( ◡ ℎ ‘ ( ℎ ‘ 𝑛 ) ) ) = ( 𝑘 ‘ 𝑛 ) ) |
| 38 |
|
fveq1 |
⊢ ( 𝑘 = ( 𝑛 ∈ 𝑁 ↦ 𝐹 ) → ( 𝑘 ‘ 𝑛 ) = ( ( 𝑛 ∈ 𝑁 ↦ 𝐹 ) ‘ 𝑛 ) ) |
| 39 |
|
eqid |
⊢ ( 𝑛 ∈ 𝑁 ↦ 𝐹 ) = ( 𝑛 ∈ 𝑁 ↦ 𝐹 ) |
| 40 |
39
|
fvmpt2 |
⊢ ( ( 𝑛 ∈ 𝑁 ∧ 𝐹 ∈ V ) → ( ( 𝑛 ∈ 𝑁 ↦ 𝐹 ) ‘ 𝑛 ) = 𝐹 ) |
| 41 |
1 40
|
mpan2 |
⊢ ( 𝑛 ∈ 𝑁 → ( ( 𝑛 ∈ 𝑁 ↦ 𝐹 ) ‘ 𝑛 ) = 𝐹 ) |
| 42 |
38 41
|
sylan9eq |
⊢ ( ( 𝑘 = ( 𝑛 ∈ 𝑁 ↦ 𝐹 ) ∧ 𝑛 ∈ 𝑁 ) → ( 𝑘 ‘ 𝑛 ) = 𝐹 ) |
| 43 |
42
|
3adant2 |
⊢ ( ( 𝑘 = ( 𝑛 ∈ 𝑁 ↦ 𝐹 ) ∧ ℎ : 𝑁 –1-1-onto→ ω ∧ 𝑛 ∈ 𝑁 ) → ( 𝑘 ‘ 𝑛 ) = 𝐹 ) |
| 44 |
34 37 43
|
3eqtrd |
⊢ ( ( 𝑘 = ( 𝑛 ∈ 𝑁 ↦ 𝐹 ) ∧ ℎ : 𝑁 –1-1-onto→ ω ∧ 𝑛 ∈ 𝑁 ) → ( ( 𝑘 ∘ ◡ ℎ ) ‘ ( ℎ ‘ 𝑛 ) ) = 𝐹 ) |
| 45 |
44
|
3expa |
⊢ ( ( ( 𝑘 = ( 𝑛 ∈ 𝑁 ↦ 𝐹 ) ∧ ℎ : 𝑁 –1-1-onto→ ω ) ∧ 𝑛 ∈ 𝑁 ) → ( ( 𝑘 ∘ ◡ ℎ ) ‘ ( ℎ ‘ 𝑛 ) ) = 𝐹 ) |
| 46 |
45
|
3adantl2 |
⊢ ( ( ( 𝑘 = ( 𝑛 ∈ 𝑁 ↦ 𝐹 ) ∧ 𝑔 Fn ω ∧ ℎ : 𝑁 –1-1-onto→ ω ) ∧ 𝑛 ∈ 𝑁 ) → ( ( 𝑘 ∘ ◡ ℎ ) ‘ ( ℎ ‘ 𝑛 ) ) = 𝐹 ) |
| 47 |
46
|
neeq1d |
⊢ ( ( ( 𝑘 = ( 𝑛 ∈ 𝑁 ↦ 𝐹 ) ∧ 𝑔 Fn ω ∧ ℎ : 𝑁 –1-1-onto→ ω ) ∧ 𝑛 ∈ 𝑁 ) → ( ( ( 𝑘 ∘ ◡ ℎ ) ‘ ( ℎ ‘ 𝑛 ) ) ≠ ∅ ↔ 𝐹 ≠ ∅ ) ) |
| 48 |
10
|
3ad2ant3 |
⊢ ( ( 𝑘 = ( 𝑛 ∈ 𝑁 ↦ 𝐹 ) ∧ 𝑔 Fn ω ∧ ℎ : 𝑁 –1-1-onto→ ω ) → ℎ : 𝑁 ⟶ ω ) |
| 49 |
|
fvco3 |
⊢ ( ( ℎ : 𝑁 ⟶ ω ∧ 𝑛 ∈ 𝑁 ) → ( ( 𝑔 ∘ ℎ ) ‘ 𝑛 ) = ( 𝑔 ‘ ( ℎ ‘ 𝑛 ) ) ) |
| 50 |
48 49
|
sylan |
⊢ ( ( ( 𝑘 = ( 𝑛 ∈ 𝑁 ↦ 𝐹 ) ∧ 𝑔 Fn ω ∧ ℎ : 𝑁 –1-1-onto→ ω ) ∧ 𝑛 ∈ 𝑁 ) → ( ( 𝑔 ∘ ℎ ) ‘ 𝑛 ) = ( 𝑔 ‘ ( ℎ ‘ 𝑛 ) ) ) |
| 51 |
50
|
eleq1d |
⊢ ( ( ( 𝑘 = ( 𝑛 ∈ 𝑁 ↦ 𝐹 ) ∧ 𝑔 Fn ω ∧ ℎ : 𝑁 –1-1-onto→ ω ) ∧ 𝑛 ∈ 𝑁 ) → ( ( ( 𝑔 ∘ ℎ ) ‘ 𝑛 ) ∈ ( ( 𝑘 ∘ ◡ ℎ ) ‘ ( ℎ ‘ 𝑛 ) ) ↔ ( 𝑔 ‘ ( ℎ ‘ 𝑛 ) ) ∈ ( ( 𝑘 ∘ ◡ ℎ ) ‘ ( ℎ ‘ 𝑛 ) ) ) ) |
| 52 |
46
|
eleq2d |
⊢ ( ( ( 𝑘 = ( 𝑛 ∈ 𝑁 ↦ 𝐹 ) ∧ 𝑔 Fn ω ∧ ℎ : 𝑁 –1-1-onto→ ω ) ∧ 𝑛 ∈ 𝑁 ) → ( ( ( 𝑔 ∘ ℎ ) ‘ 𝑛 ) ∈ ( ( 𝑘 ∘ ◡ ℎ ) ‘ ( ℎ ‘ 𝑛 ) ) ↔ ( ( 𝑔 ∘ ℎ ) ‘ 𝑛 ) ∈ 𝐹 ) ) |
| 53 |
51 52
|
bitr3d |
⊢ ( ( ( 𝑘 = ( 𝑛 ∈ 𝑁 ↦ 𝐹 ) ∧ 𝑔 Fn ω ∧ ℎ : 𝑁 –1-1-onto→ ω ) ∧ 𝑛 ∈ 𝑁 ) → ( ( 𝑔 ‘ ( ℎ ‘ 𝑛 ) ) ∈ ( ( 𝑘 ∘ ◡ ℎ ) ‘ ( ℎ ‘ 𝑛 ) ) ↔ ( ( 𝑔 ∘ ℎ ) ‘ 𝑛 ) ∈ 𝐹 ) ) |
| 54 |
47 53
|
imbi12d |
⊢ ( ( ( 𝑘 = ( 𝑛 ∈ 𝑁 ↦ 𝐹 ) ∧ 𝑔 Fn ω ∧ ℎ : 𝑁 –1-1-onto→ ω ) ∧ 𝑛 ∈ 𝑁 ) → ( ( ( ( 𝑘 ∘ ◡ ℎ ) ‘ ( ℎ ‘ 𝑛 ) ) ≠ ∅ → ( 𝑔 ‘ ( ℎ ‘ 𝑛 ) ) ∈ ( ( 𝑘 ∘ ◡ ℎ ) ‘ ( ℎ ‘ 𝑛 ) ) ) ↔ ( 𝐹 ≠ ∅ → ( ( 𝑔 ∘ ℎ ) ‘ 𝑛 ) ∈ 𝐹 ) ) ) |
| 55 |
28 54
|
sylibd |
⊢ ( ( ( 𝑘 = ( 𝑛 ∈ 𝑁 ↦ 𝐹 ) ∧ 𝑔 Fn ω ∧ ℎ : 𝑁 –1-1-onto→ ω ) ∧ 𝑛 ∈ 𝑁 ) → ( ∀ 𝑚 ∈ ω ( ( ( 𝑘 ∘ ◡ ℎ ) ‘ 𝑚 ) ≠ ∅ → ( 𝑔 ‘ 𝑚 ) ∈ ( ( 𝑘 ∘ ◡ ℎ ) ‘ 𝑚 ) ) → ( 𝐹 ≠ ∅ → ( ( 𝑔 ∘ ℎ ) ‘ 𝑛 ) ∈ 𝐹 ) ) ) |
| 56 |
55
|
ex |
⊢ ( ( 𝑘 = ( 𝑛 ∈ 𝑁 ↦ 𝐹 ) ∧ 𝑔 Fn ω ∧ ℎ : 𝑁 –1-1-onto→ ω ) → ( 𝑛 ∈ 𝑁 → ( ∀ 𝑚 ∈ ω ( ( ( 𝑘 ∘ ◡ ℎ ) ‘ 𝑚 ) ≠ ∅ → ( 𝑔 ‘ 𝑚 ) ∈ ( ( 𝑘 ∘ ◡ ℎ ) ‘ 𝑚 ) ) → ( 𝐹 ≠ ∅ → ( ( 𝑔 ∘ ℎ ) ‘ 𝑛 ) ∈ 𝐹 ) ) ) ) |
| 57 |
56
|
com23 |
⊢ ( ( 𝑘 = ( 𝑛 ∈ 𝑁 ↦ 𝐹 ) ∧ 𝑔 Fn ω ∧ ℎ : 𝑁 –1-1-onto→ ω ) → ( ∀ 𝑚 ∈ ω ( ( ( 𝑘 ∘ ◡ ℎ ) ‘ 𝑚 ) ≠ ∅ → ( 𝑔 ‘ 𝑚 ) ∈ ( ( 𝑘 ∘ ◡ ℎ ) ‘ 𝑚 ) ) → ( 𝑛 ∈ 𝑁 → ( 𝐹 ≠ ∅ → ( ( 𝑔 ∘ ℎ ) ‘ 𝑛 ) ∈ 𝐹 ) ) ) ) |
| 58 |
57
|
3exp |
⊢ ( 𝑘 = ( 𝑛 ∈ 𝑁 ↦ 𝐹 ) → ( 𝑔 Fn ω → ( ℎ : 𝑁 –1-1-onto→ ω → ( ∀ 𝑚 ∈ ω ( ( ( 𝑘 ∘ ◡ ℎ ) ‘ 𝑚 ) ≠ ∅ → ( 𝑔 ‘ 𝑚 ) ∈ ( ( 𝑘 ∘ ◡ ℎ ) ‘ 𝑚 ) ) → ( 𝑛 ∈ 𝑁 → ( 𝐹 ≠ ∅ → ( ( 𝑔 ∘ ℎ ) ‘ 𝑛 ) ∈ 𝐹 ) ) ) ) ) ) |
| 59 |
58
|
com34 |
⊢ ( 𝑘 = ( 𝑛 ∈ 𝑁 ↦ 𝐹 ) → ( 𝑔 Fn ω → ( ∀ 𝑚 ∈ ω ( ( ( 𝑘 ∘ ◡ ℎ ) ‘ 𝑚 ) ≠ ∅ → ( 𝑔 ‘ 𝑚 ) ∈ ( ( 𝑘 ∘ ◡ ℎ ) ‘ 𝑚 ) ) → ( ℎ : 𝑁 –1-1-onto→ ω → ( 𝑛 ∈ 𝑁 → ( 𝐹 ≠ ∅ → ( ( 𝑔 ∘ ℎ ) ‘ 𝑛 ) ∈ 𝐹 ) ) ) ) ) ) |
| 60 |
59
|
imp32 |
⊢ ( ( 𝑘 = ( 𝑛 ∈ 𝑁 ↦ 𝐹 ) ∧ ( 𝑔 Fn ω ∧ ∀ 𝑚 ∈ ω ( ( ( 𝑘 ∘ ◡ ℎ ) ‘ 𝑚 ) ≠ ∅ → ( 𝑔 ‘ 𝑚 ) ∈ ( ( 𝑘 ∘ ◡ ℎ ) ‘ 𝑚 ) ) ) ) → ( ℎ : 𝑁 –1-1-onto→ ω → ( 𝑛 ∈ 𝑁 → ( 𝐹 ≠ ∅ → ( ( 𝑔 ∘ ℎ ) ‘ 𝑛 ) ∈ 𝐹 ) ) ) ) |
| 61 |
60
|
3impia |
⊢ ( ( 𝑘 = ( 𝑛 ∈ 𝑁 ↦ 𝐹 ) ∧ ( 𝑔 Fn ω ∧ ∀ 𝑚 ∈ ω ( ( ( 𝑘 ∘ ◡ ℎ ) ‘ 𝑚 ) ≠ ∅ → ( 𝑔 ‘ 𝑚 ) ∈ ( ( 𝑘 ∘ ◡ ℎ ) ‘ 𝑚 ) ) ) ∧ ℎ : 𝑁 –1-1-onto→ ω ) → ( 𝑛 ∈ 𝑁 → ( 𝐹 ≠ ∅ → ( ( 𝑔 ∘ ℎ ) ‘ 𝑛 ) ∈ 𝐹 ) ) ) |
| 62 |
19 61
|
ralrimi |
⊢ ( ( 𝑘 = ( 𝑛 ∈ 𝑁 ↦ 𝐹 ) ∧ ( 𝑔 Fn ω ∧ ∀ 𝑚 ∈ ω ( ( ( 𝑘 ∘ ◡ ℎ ) ‘ 𝑚 ) ≠ ∅ → ( 𝑔 ‘ 𝑚 ) ∈ ( ( 𝑘 ∘ ◡ ℎ ) ‘ 𝑚 ) ) ) ∧ ℎ : 𝑁 –1-1-onto→ ω ) → ∀ 𝑛 ∈ 𝑁 ( 𝐹 ≠ ∅ → ( ( 𝑔 ∘ ℎ ) ‘ 𝑛 ) ∈ 𝐹 ) ) |
| 63 |
|
vex |
⊢ 𝑔 ∈ V |
| 64 |
|
vex |
⊢ ℎ ∈ V |
| 65 |
63 64
|
coex |
⊢ ( 𝑔 ∘ ℎ ) ∈ V |
| 66 |
|
fneq1 |
⊢ ( 𝑓 = ( 𝑔 ∘ ℎ ) → ( 𝑓 Fn 𝑁 ↔ ( 𝑔 ∘ ℎ ) Fn 𝑁 ) ) |
| 67 |
|
fveq1 |
⊢ ( 𝑓 = ( 𝑔 ∘ ℎ ) → ( 𝑓 ‘ 𝑛 ) = ( ( 𝑔 ∘ ℎ ) ‘ 𝑛 ) ) |
| 68 |
67
|
eleq1d |
⊢ ( 𝑓 = ( 𝑔 ∘ ℎ ) → ( ( 𝑓 ‘ 𝑛 ) ∈ 𝐹 ↔ ( ( 𝑔 ∘ ℎ ) ‘ 𝑛 ) ∈ 𝐹 ) ) |
| 69 |
68
|
imbi2d |
⊢ ( 𝑓 = ( 𝑔 ∘ ℎ ) → ( ( 𝐹 ≠ ∅ → ( 𝑓 ‘ 𝑛 ) ∈ 𝐹 ) ↔ ( 𝐹 ≠ ∅ → ( ( 𝑔 ∘ ℎ ) ‘ 𝑛 ) ∈ 𝐹 ) ) ) |
| 70 |
69
|
ralbidv |
⊢ ( 𝑓 = ( 𝑔 ∘ ℎ ) → ( ∀ 𝑛 ∈ 𝑁 ( 𝐹 ≠ ∅ → ( 𝑓 ‘ 𝑛 ) ∈ 𝐹 ) ↔ ∀ 𝑛 ∈ 𝑁 ( 𝐹 ≠ ∅ → ( ( 𝑔 ∘ ℎ ) ‘ 𝑛 ) ∈ 𝐹 ) ) ) |
| 71 |
66 70
|
anbi12d |
⊢ ( 𝑓 = ( 𝑔 ∘ ℎ ) → ( ( 𝑓 Fn 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( 𝐹 ≠ ∅ → ( 𝑓 ‘ 𝑛 ) ∈ 𝐹 ) ) ↔ ( ( 𝑔 ∘ ℎ ) Fn 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( 𝐹 ≠ ∅ → ( ( 𝑔 ∘ ℎ ) ‘ 𝑛 ) ∈ 𝐹 ) ) ) ) |
| 72 |
65 71
|
spcev |
⊢ ( ( ( 𝑔 ∘ ℎ ) Fn 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( 𝐹 ≠ ∅ → ( ( 𝑔 ∘ ℎ ) ‘ 𝑛 ) ∈ 𝐹 ) ) → ∃ 𝑓 ( 𝑓 Fn 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( 𝐹 ≠ ∅ → ( 𝑓 ‘ 𝑛 ) ∈ 𝐹 ) ) ) |
| 73 |
14 62 72
|
syl2anc |
⊢ ( ( 𝑘 = ( 𝑛 ∈ 𝑁 ↦ 𝐹 ) ∧ ( 𝑔 Fn ω ∧ ∀ 𝑚 ∈ ω ( ( ( 𝑘 ∘ ◡ ℎ ) ‘ 𝑚 ) ≠ ∅ → ( 𝑔 ‘ 𝑚 ) ∈ ( ( 𝑘 ∘ ◡ ℎ ) ‘ 𝑚 ) ) ) ∧ ℎ : 𝑁 –1-1-onto→ ω ) → ∃ 𝑓 ( 𝑓 Fn 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( 𝐹 ≠ ∅ → ( 𝑓 ‘ 𝑛 ) ∈ 𝐹 ) ) ) |
| 74 |
73
|
3exp |
⊢ ( 𝑘 = ( 𝑛 ∈ 𝑁 ↦ 𝐹 ) → ( ( 𝑔 Fn ω ∧ ∀ 𝑚 ∈ ω ( ( ( 𝑘 ∘ ◡ ℎ ) ‘ 𝑚 ) ≠ ∅ → ( 𝑔 ‘ 𝑚 ) ∈ ( ( 𝑘 ∘ ◡ ℎ ) ‘ 𝑚 ) ) ) → ( ℎ : 𝑁 –1-1-onto→ ω → ∃ 𝑓 ( 𝑓 Fn 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( 𝐹 ≠ ∅ → ( 𝑓 ‘ 𝑛 ) ∈ 𝐹 ) ) ) ) ) |
| 75 |
74
|
exlimdv |
⊢ ( 𝑘 = ( 𝑛 ∈ 𝑁 ↦ 𝐹 ) → ( ∃ 𝑔 ( 𝑔 Fn ω ∧ ∀ 𝑚 ∈ ω ( ( ( 𝑘 ∘ ◡ ℎ ) ‘ 𝑚 ) ≠ ∅ → ( 𝑔 ‘ 𝑚 ) ∈ ( ( 𝑘 ∘ ◡ ℎ ) ‘ 𝑚 ) ) ) → ( ℎ : 𝑁 –1-1-onto→ ω → ∃ 𝑓 ( 𝑓 Fn 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( 𝐹 ≠ ∅ → ( 𝑓 ‘ 𝑛 ) ∈ 𝐹 ) ) ) ) ) |
| 76 |
9 75
|
mpi |
⊢ ( 𝑘 = ( 𝑛 ∈ 𝑁 ↦ 𝐹 ) → ( ℎ : 𝑁 –1-1-onto→ ω → ∃ 𝑓 ( 𝑓 Fn 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( 𝐹 ≠ ∅ → ( 𝑓 ‘ 𝑛 ) ∈ 𝐹 ) ) ) ) |
| 77 |
76
|
exlimdv |
⊢ ( 𝑘 = ( 𝑛 ∈ 𝑁 ↦ 𝐹 ) → ( ∃ ℎ ℎ : 𝑁 –1-1-onto→ ω → ∃ 𝑓 ( 𝑓 Fn 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( 𝐹 ≠ ∅ → ( 𝑓 ‘ 𝑛 ) ∈ 𝐹 ) ) ) ) |
| 78 |
8 77
|
mpi |
⊢ ( 𝑘 = ( 𝑛 ∈ 𝑁 ↦ 𝐹 ) → ∃ 𝑓 ( 𝑓 Fn 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( 𝐹 ≠ ∅ → ( 𝑓 ‘ 𝑛 ) ∈ 𝐹 ) ) ) |
| 79 |
6 78
|
vtocle |
⊢ ∃ 𝑓 ( 𝑓 Fn 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( 𝐹 ≠ ∅ → ( 𝑓 ‘ 𝑛 ) ∈ 𝐹 ) ) |