| Step |
Hyp |
Ref |
Expression |
| 1 |
|
axcc4.1 |
⊢ 𝐴 ∈ V |
| 2 |
|
axcc4.2 |
⊢ 𝑁 ≈ ω |
| 3 |
|
axcc4.3 |
⊢ ( 𝑥 = ( 𝑓 ‘ 𝑛 ) → ( 𝜑 ↔ 𝜓 ) ) |
| 4 |
1
|
rabex |
⊢ { 𝑥 ∈ 𝐴 ∣ 𝜑 } ∈ V |
| 5 |
4 2
|
axcc3 |
⊢ ∃ 𝑓 ( 𝑓 Fn 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( { 𝑥 ∈ 𝐴 ∣ 𝜑 } ≠ ∅ → ( 𝑓 ‘ 𝑛 ) ∈ { 𝑥 ∈ 𝐴 ∣ 𝜑 } ) ) |
| 6 |
|
rabn0 |
⊢ ( { 𝑥 ∈ 𝐴 ∣ 𝜑 } ≠ ∅ ↔ ∃ 𝑥 ∈ 𝐴 𝜑 ) |
| 7 |
|
pm2.27 |
⊢ ( { 𝑥 ∈ 𝐴 ∣ 𝜑 } ≠ ∅ → ( ( { 𝑥 ∈ 𝐴 ∣ 𝜑 } ≠ ∅ → ( 𝑓 ‘ 𝑛 ) ∈ { 𝑥 ∈ 𝐴 ∣ 𝜑 } ) → ( 𝑓 ‘ 𝑛 ) ∈ { 𝑥 ∈ 𝐴 ∣ 𝜑 } ) ) |
| 8 |
6 7
|
sylbir |
⊢ ( ∃ 𝑥 ∈ 𝐴 𝜑 → ( ( { 𝑥 ∈ 𝐴 ∣ 𝜑 } ≠ ∅ → ( 𝑓 ‘ 𝑛 ) ∈ { 𝑥 ∈ 𝐴 ∣ 𝜑 } ) → ( 𝑓 ‘ 𝑛 ) ∈ { 𝑥 ∈ 𝐴 ∣ 𝜑 } ) ) |
| 9 |
3
|
elrab |
⊢ ( ( 𝑓 ‘ 𝑛 ) ∈ { 𝑥 ∈ 𝐴 ∣ 𝜑 } ↔ ( ( 𝑓 ‘ 𝑛 ) ∈ 𝐴 ∧ 𝜓 ) ) |
| 10 |
8 9
|
imbitrdi |
⊢ ( ∃ 𝑥 ∈ 𝐴 𝜑 → ( ( { 𝑥 ∈ 𝐴 ∣ 𝜑 } ≠ ∅ → ( 𝑓 ‘ 𝑛 ) ∈ { 𝑥 ∈ 𝐴 ∣ 𝜑 } ) → ( ( 𝑓 ‘ 𝑛 ) ∈ 𝐴 ∧ 𝜓 ) ) ) |
| 11 |
10
|
ral2imi |
⊢ ( ∀ 𝑛 ∈ 𝑁 ∃ 𝑥 ∈ 𝐴 𝜑 → ( ∀ 𝑛 ∈ 𝑁 ( { 𝑥 ∈ 𝐴 ∣ 𝜑 } ≠ ∅ → ( 𝑓 ‘ 𝑛 ) ∈ { 𝑥 ∈ 𝐴 ∣ 𝜑 } ) → ∀ 𝑛 ∈ 𝑁 ( ( 𝑓 ‘ 𝑛 ) ∈ 𝐴 ∧ 𝜓 ) ) ) |
| 12 |
|
simpl |
⊢ ( ( ( 𝑓 ‘ 𝑛 ) ∈ 𝐴 ∧ 𝜓 ) → ( 𝑓 ‘ 𝑛 ) ∈ 𝐴 ) |
| 13 |
12
|
ralimi |
⊢ ( ∀ 𝑛 ∈ 𝑁 ( ( 𝑓 ‘ 𝑛 ) ∈ 𝐴 ∧ 𝜓 ) → ∀ 𝑛 ∈ 𝑁 ( 𝑓 ‘ 𝑛 ) ∈ 𝐴 ) |
| 14 |
11 13
|
syl6 |
⊢ ( ∀ 𝑛 ∈ 𝑁 ∃ 𝑥 ∈ 𝐴 𝜑 → ( ∀ 𝑛 ∈ 𝑁 ( { 𝑥 ∈ 𝐴 ∣ 𝜑 } ≠ ∅ → ( 𝑓 ‘ 𝑛 ) ∈ { 𝑥 ∈ 𝐴 ∣ 𝜑 } ) → ∀ 𝑛 ∈ 𝑁 ( 𝑓 ‘ 𝑛 ) ∈ 𝐴 ) ) |
| 15 |
14
|
anim2d |
⊢ ( ∀ 𝑛 ∈ 𝑁 ∃ 𝑥 ∈ 𝐴 𝜑 → ( ( 𝑓 Fn 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( { 𝑥 ∈ 𝐴 ∣ 𝜑 } ≠ ∅ → ( 𝑓 ‘ 𝑛 ) ∈ { 𝑥 ∈ 𝐴 ∣ 𝜑 } ) ) → ( 𝑓 Fn 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( 𝑓 ‘ 𝑛 ) ∈ 𝐴 ) ) ) |
| 16 |
|
ffnfv |
⊢ ( 𝑓 : 𝑁 ⟶ 𝐴 ↔ ( 𝑓 Fn 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( 𝑓 ‘ 𝑛 ) ∈ 𝐴 ) ) |
| 17 |
15 16
|
imbitrrdi |
⊢ ( ∀ 𝑛 ∈ 𝑁 ∃ 𝑥 ∈ 𝐴 𝜑 → ( ( 𝑓 Fn 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( { 𝑥 ∈ 𝐴 ∣ 𝜑 } ≠ ∅ → ( 𝑓 ‘ 𝑛 ) ∈ { 𝑥 ∈ 𝐴 ∣ 𝜑 } ) ) → 𝑓 : 𝑁 ⟶ 𝐴 ) ) |
| 18 |
|
simpr |
⊢ ( ( ( 𝑓 ‘ 𝑛 ) ∈ 𝐴 ∧ 𝜓 ) → 𝜓 ) |
| 19 |
18
|
ralimi |
⊢ ( ∀ 𝑛 ∈ 𝑁 ( ( 𝑓 ‘ 𝑛 ) ∈ 𝐴 ∧ 𝜓 ) → ∀ 𝑛 ∈ 𝑁 𝜓 ) |
| 20 |
11 19
|
syl6 |
⊢ ( ∀ 𝑛 ∈ 𝑁 ∃ 𝑥 ∈ 𝐴 𝜑 → ( ∀ 𝑛 ∈ 𝑁 ( { 𝑥 ∈ 𝐴 ∣ 𝜑 } ≠ ∅ → ( 𝑓 ‘ 𝑛 ) ∈ { 𝑥 ∈ 𝐴 ∣ 𝜑 } ) → ∀ 𝑛 ∈ 𝑁 𝜓 ) ) |
| 21 |
20
|
adantld |
⊢ ( ∀ 𝑛 ∈ 𝑁 ∃ 𝑥 ∈ 𝐴 𝜑 → ( ( 𝑓 Fn 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( { 𝑥 ∈ 𝐴 ∣ 𝜑 } ≠ ∅ → ( 𝑓 ‘ 𝑛 ) ∈ { 𝑥 ∈ 𝐴 ∣ 𝜑 } ) ) → ∀ 𝑛 ∈ 𝑁 𝜓 ) ) |
| 22 |
17 21
|
jcad |
⊢ ( ∀ 𝑛 ∈ 𝑁 ∃ 𝑥 ∈ 𝐴 𝜑 → ( ( 𝑓 Fn 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( { 𝑥 ∈ 𝐴 ∣ 𝜑 } ≠ ∅ → ( 𝑓 ‘ 𝑛 ) ∈ { 𝑥 ∈ 𝐴 ∣ 𝜑 } ) ) → ( 𝑓 : 𝑁 ⟶ 𝐴 ∧ ∀ 𝑛 ∈ 𝑁 𝜓 ) ) ) |
| 23 |
22
|
eximdv |
⊢ ( ∀ 𝑛 ∈ 𝑁 ∃ 𝑥 ∈ 𝐴 𝜑 → ( ∃ 𝑓 ( 𝑓 Fn 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( { 𝑥 ∈ 𝐴 ∣ 𝜑 } ≠ ∅ → ( 𝑓 ‘ 𝑛 ) ∈ { 𝑥 ∈ 𝐴 ∣ 𝜑 } ) ) → ∃ 𝑓 ( 𝑓 : 𝑁 ⟶ 𝐴 ∧ ∀ 𝑛 ∈ 𝑁 𝜓 ) ) ) |
| 24 |
5 23
|
mpi |
⊢ ( ∀ 𝑛 ∈ 𝑁 ∃ 𝑥 ∈ 𝐴 𝜑 → ∃ 𝑓 ( 𝑓 : 𝑁 ⟶ 𝐴 ∧ ∀ 𝑛 ∈ 𝑁 𝜓 ) ) |