Step |
Hyp |
Ref |
Expression |
1 |
|
axccd.1 |
⊢ ( 𝜑 → 𝐴 ≈ ω ) |
2 |
|
axccd.2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ≠ ∅ ) |
3 |
|
encv |
⊢ ( 𝐴 ≈ ω → ( 𝐴 ∈ V ∧ ω ∈ V ) ) |
4 |
3
|
simpld |
⊢ ( 𝐴 ≈ ω → 𝐴 ∈ V ) |
5 |
|
breq1 |
⊢ ( 𝑦 = 𝐴 → ( 𝑦 ≈ ω ↔ 𝐴 ≈ ω ) ) |
6 |
|
raleq |
⊢ ( 𝑦 = 𝐴 → ( ∀ 𝑥 ∈ 𝑦 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ↔ ∀ 𝑥 ∈ 𝐴 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ) |
7 |
6
|
exbidv |
⊢ ( 𝑦 = 𝐴 → ( ∃ 𝑓 ∀ 𝑥 ∈ 𝑦 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ↔ ∃ 𝑓 ∀ 𝑥 ∈ 𝐴 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ) |
8 |
5 7
|
imbi12d |
⊢ ( 𝑦 = 𝐴 → ( ( 𝑦 ≈ ω → ∃ 𝑓 ∀ 𝑥 ∈ 𝑦 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ↔ ( 𝐴 ≈ ω → ∃ 𝑓 ∀ 𝑥 ∈ 𝐴 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ) ) |
9 |
|
ax-cc |
⊢ ( 𝑦 ≈ ω → ∃ 𝑓 ∀ 𝑥 ∈ 𝑦 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) |
10 |
8 9
|
vtoclg |
⊢ ( 𝐴 ∈ V → ( 𝐴 ≈ ω → ∃ 𝑓 ∀ 𝑥 ∈ 𝐴 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ) |
11 |
1 4 10
|
3syl |
⊢ ( 𝜑 → ( 𝐴 ≈ ω → ∃ 𝑓 ∀ 𝑥 ∈ 𝐴 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ) |
12 |
1 11
|
mpd |
⊢ ( 𝜑 → ∃ 𝑓 ∀ 𝑥 ∈ 𝐴 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) |
13 |
|
nfv |
⊢ Ⅎ 𝑥 𝜑 |
14 |
|
nfra1 |
⊢ Ⅎ 𝑥 ∀ 𝑥 ∈ 𝐴 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) |
15 |
13 14
|
nfan |
⊢ Ⅎ 𝑥 ( 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) |
16 |
2
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ≠ ∅ ) |
17 |
|
rspa |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) |
18 |
17
|
adantll |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) |
19 |
16 18
|
mpd |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) |
20 |
15 19
|
ralrimia |
⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) → ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) |
21 |
20
|
ex |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐴 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) → ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) |
22 |
21
|
eximdv |
⊢ ( 𝜑 → ( ∃ 𝑓 ∀ 𝑥 ∈ 𝐴 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) → ∃ 𝑓 ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) |
23 |
12 22
|
mpd |
⊢ ( 𝜑 → ∃ 𝑓 ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) |