| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							axccd.1 | 
							⊢ ( 𝜑  →  𝐴  ≈  ω )  | 
						
						
							| 2 | 
							
								
							 | 
							axccd.2 | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝑥  ≠  ∅ )  | 
						
						
							| 3 | 
							
								
							 | 
							encv | 
							⊢ ( 𝐴  ≈  ω  →  ( 𝐴  ∈  V  ∧  ω  ∈  V ) )  | 
						
						
							| 4 | 
							
								3
							 | 
							simpld | 
							⊢ ( 𝐴  ≈  ω  →  𝐴  ∈  V )  | 
						
						
							| 5 | 
							
								
							 | 
							breq1 | 
							⊢ ( 𝑦  =  𝐴  →  ( 𝑦  ≈  ω  ↔  𝐴  ≈  ω ) )  | 
						
						
							| 6 | 
							
								
							 | 
							raleq | 
							⊢ ( 𝑦  =  𝐴  →  ( ∀ 𝑥  ∈  𝑦 ( 𝑥  ≠  ∅  →  ( 𝑓 ‘ 𝑥 )  ∈  𝑥 )  ↔  ∀ 𝑥  ∈  𝐴 ( 𝑥  ≠  ∅  →  ( 𝑓 ‘ 𝑥 )  ∈  𝑥 ) ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							exbidv | 
							⊢ ( 𝑦  =  𝐴  →  ( ∃ 𝑓 ∀ 𝑥  ∈  𝑦 ( 𝑥  ≠  ∅  →  ( 𝑓 ‘ 𝑥 )  ∈  𝑥 )  ↔  ∃ 𝑓 ∀ 𝑥  ∈  𝐴 ( 𝑥  ≠  ∅  →  ( 𝑓 ‘ 𝑥 )  ∈  𝑥 ) ) )  | 
						
						
							| 8 | 
							
								5 7
							 | 
							imbi12d | 
							⊢ ( 𝑦  =  𝐴  →  ( ( 𝑦  ≈  ω  →  ∃ 𝑓 ∀ 𝑥  ∈  𝑦 ( 𝑥  ≠  ∅  →  ( 𝑓 ‘ 𝑥 )  ∈  𝑥 ) )  ↔  ( 𝐴  ≈  ω  →  ∃ 𝑓 ∀ 𝑥  ∈  𝐴 ( 𝑥  ≠  ∅  →  ( 𝑓 ‘ 𝑥 )  ∈  𝑥 ) ) ) )  | 
						
						
							| 9 | 
							
								
							 | 
							ax-cc | 
							⊢ ( 𝑦  ≈  ω  →  ∃ 𝑓 ∀ 𝑥  ∈  𝑦 ( 𝑥  ≠  ∅  →  ( 𝑓 ‘ 𝑥 )  ∈  𝑥 ) )  | 
						
						
							| 10 | 
							
								8 9
							 | 
							vtoclg | 
							⊢ ( 𝐴  ∈  V  →  ( 𝐴  ≈  ω  →  ∃ 𝑓 ∀ 𝑥  ∈  𝐴 ( 𝑥  ≠  ∅  →  ( 𝑓 ‘ 𝑥 )  ∈  𝑥 ) ) )  | 
						
						
							| 11 | 
							
								1 4 10
							 | 
							3syl | 
							⊢ ( 𝜑  →  ( 𝐴  ≈  ω  →  ∃ 𝑓 ∀ 𝑥  ∈  𝐴 ( 𝑥  ≠  ∅  →  ( 𝑓 ‘ 𝑥 )  ∈  𝑥 ) ) )  | 
						
						
							| 12 | 
							
								1 11
							 | 
							mpd | 
							⊢ ( 𝜑  →  ∃ 𝑓 ∀ 𝑥  ∈  𝐴 ( 𝑥  ≠  ∅  →  ( 𝑓 ‘ 𝑥 )  ∈  𝑥 ) )  | 
						
						
							| 13 | 
							
								
							 | 
							nfv | 
							⊢ Ⅎ 𝑥 𝜑  | 
						
						
							| 14 | 
							
								
							 | 
							nfra1 | 
							⊢ Ⅎ 𝑥 ∀ 𝑥  ∈  𝐴 ( 𝑥  ≠  ∅  →  ( 𝑓 ‘ 𝑥 )  ∈  𝑥 )  | 
						
						
							| 15 | 
							
								13 14
							 | 
							nfan | 
							⊢ Ⅎ 𝑥 ( 𝜑  ∧  ∀ 𝑥  ∈  𝐴 ( 𝑥  ≠  ∅  →  ( 𝑓 ‘ 𝑥 )  ∈  𝑥 ) )  | 
						
						
							| 16 | 
							
								2
							 | 
							adantlr | 
							⊢ ( ( ( 𝜑  ∧  ∀ 𝑥  ∈  𝐴 ( 𝑥  ≠  ∅  →  ( 𝑓 ‘ 𝑥 )  ∈  𝑥 ) )  ∧  𝑥  ∈  𝐴 )  →  𝑥  ≠  ∅ )  | 
						
						
							| 17 | 
							
								
							 | 
							rspa | 
							⊢ ( ( ∀ 𝑥  ∈  𝐴 ( 𝑥  ≠  ∅  →  ( 𝑓 ‘ 𝑥 )  ∈  𝑥 )  ∧  𝑥  ∈  𝐴 )  →  ( 𝑥  ≠  ∅  →  ( 𝑓 ‘ 𝑥 )  ∈  𝑥 ) )  | 
						
						
							| 18 | 
							
								17
							 | 
							adantll | 
							⊢ ( ( ( 𝜑  ∧  ∀ 𝑥  ∈  𝐴 ( 𝑥  ≠  ∅  →  ( 𝑓 ‘ 𝑥 )  ∈  𝑥 ) )  ∧  𝑥  ∈  𝐴 )  →  ( 𝑥  ≠  ∅  →  ( 𝑓 ‘ 𝑥 )  ∈  𝑥 ) )  | 
						
						
							| 19 | 
							
								16 18
							 | 
							mpd | 
							⊢ ( ( ( 𝜑  ∧  ∀ 𝑥  ∈  𝐴 ( 𝑥  ≠  ∅  →  ( 𝑓 ‘ 𝑥 )  ∈  𝑥 ) )  ∧  𝑥  ∈  𝐴 )  →  ( 𝑓 ‘ 𝑥 )  ∈  𝑥 )  | 
						
						
							| 20 | 
							
								15 19
							 | 
							ralrimia | 
							⊢ ( ( 𝜑  ∧  ∀ 𝑥  ∈  𝐴 ( 𝑥  ≠  ∅  →  ( 𝑓 ‘ 𝑥 )  ∈  𝑥 ) )  →  ∀ 𝑥  ∈  𝐴 ( 𝑓 ‘ 𝑥 )  ∈  𝑥 )  | 
						
						
							| 21 | 
							
								20
							 | 
							ex | 
							⊢ ( 𝜑  →  ( ∀ 𝑥  ∈  𝐴 ( 𝑥  ≠  ∅  →  ( 𝑓 ‘ 𝑥 )  ∈  𝑥 )  →  ∀ 𝑥  ∈  𝐴 ( 𝑓 ‘ 𝑥 )  ∈  𝑥 ) )  | 
						
						
							| 22 | 
							
								21
							 | 
							eximdv | 
							⊢ ( 𝜑  →  ( ∃ 𝑓 ∀ 𝑥  ∈  𝐴 ( 𝑥  ≠  ∅  →  ( 𝑓 ‘ 𝑥 )  ∈  𝑥 )  →  ∃ 𝑓 ∀ 𝑥  ∈  𝐴 ( 𝑓 ‘ 𝑥 )  ∈  𝑥 ) )  | 
						
						
							| 23 | 
							
								12 22
							 | 
							mpd | 
							⊢ ( 𝜑  →  ∃ 𝑓 ∀ 𝑥  ∈  𝐴 ( 𝑓 ‘ 𝑥 )  ∈  𝑥 )  |