Step |
Hyp |
Ref |
Expression |
1 |
|
axccd2.1 |
⊢ ( 𝜑 → 𝐴 ≼ ω ) |
2 |
|
axccd2.2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ≠ ∅ ) |
3 |
|
isfinite2 |
⊢ ( 𝐴 ≺ ω → 𝐴 ∈ Fin ) |
4 |
3
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐴 ≺ ω ) → 𝐴 ∈ Fin ) |
5 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≺ ω ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐴 ) |
6 |
2
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≺ ω ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ≠ ∅ ) |
7 |
4 5 6
|
choicefi |
⊢ ( ( 𝜑 ∧ 𝐴 ≺ ω ) → ∃ 𝑓 ( 𝑓 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) |
8 |
|
simpr |
⊢ ( ( 𝑓 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) → ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) |
9 |
8
|
a1i |
⊢ ( ( 𝜑 ∧ 𝐴 ≺ ω ) → ( ( 𝑓 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) → ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) |
10 |
9
|
eximdv |
⊢ ( ( 𝜑 ∧ 𝐴 ≺ ω ) → ( ∃ 𝑓 ( 𝑓 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) → ∃ 𝑓 ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) |
11 |
7 10
|
mpd |
⊢ ( ( 𝜑 ∧ 𝐴 ≺ ω ) → ∃ 𝑓 ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) |
12 |
1
|
anim1i |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ≺ ω ) → ( 𝐴 ≼ ω ∧ ¬ 𝐴 ≺ ω ) ) |
13 |
|
bren2 |
⊢ ( 𝐴 ≈ ω ↔ ( 𝐴 ≼ ω ∧ ¬ 𝐴 ≺ ω ) ) |
14 |
12 13
|
sylibr |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ≺ ω ) → 𝐴 ≈ ω ) |
15 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐴 ≈ ω ) → 𝐴 ≈ ω ) |
16 |
2
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≈ ω ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ≠ ∅ ) |
17 |
15 16
|
axccd |
⊢ ( ( 𝜑 ∧ 𝐴 ≈ ω ) → ∃ 𝑓 ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) |
18 |
14 17
|
syldan |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ≺ ω ) → ∃ 𝑓 ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) |
19 |
11 18
|
pm2.61dan |
⊢ ( 𝜑 → ∃ 𝑓 ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) |