Step |
Hyp |
Ref |
Expression |
1 |
|
axccdom.1 |
⊢ ( 𝜑 → 𝑋 ≼ ω ) |
2 |
|
axccdom.2 |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑋 ) → 𝑧 ≠ ∅ ) |
3 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ Fin ) → 𝑋 ∈ Fin ) |
4 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ Fin ) ∧ 𝑧 ∈ 𝑋 ) → 𝑧 ∈ 𝑋 ) |
5 |
2
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ Fin ) ∧ 𝑧 ∈ 𝑋 ) → 𝑧 ≠ ∅ ) |
6 |
3 4 5
|
choicefi |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ Fin ) → ∃ 𝑓 ( 𝑓 Fn 𝑋 ∧ ∀ 𝑧 ∈ 𝑋 ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ) |
7 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 ∈ Fin ) → 𝑋 ≼ ω ) |
8 |
|
isfinite2 |
⊢ ( 𝑋 ≺ ω → 𝑋 ∈ Fin ) |
9 |
8
|
con3i |
⊢ ( ¬ 𝑋 ∈ Fin → ¬ 𝑋 ≺ ω ) |
10 |
9
|
adantl |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 ∈ Fin ) → ¬ 𝑋 ≺ ω ) |
11 |
7 10
|
jca |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 ∈ Fin ) → ( 𝑋 ≼ ω ∧ ¬ 𝑋 ≺ ω ) ) |
12 |
|
bren2 |
⊢ ( 𝑋 ≈ ω ↔ ( 𝑋 ≼ ω ∧ ¬ 𝑋 ≺ ω ) ) |
13 |
11 12
|
sylibr |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 ∈ Fin ) → 𝑋 ≈ ω ) |
14 |
|
ctex |
⊢ ( 𝑋 ≼ ω → 𝑋 ∈ V ) |
15 |
1 14
|
syl |
⊢ ( 𝜑 → 𝑋 ∈ V ) |
16 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ≈ ω ) → 𝑋 ∈ V ) |
17 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑋 ≈ ω ) → 𝑋 ≈ ω ) |
18 |
|
breq1 |
⊢ ( 𝑥 = 𝑋 → ( 𝑥 ≈ ω ↔ 𝑋 ≈ ω ) ) |
19 |
|
raleq |
⊢ ( 𝑥 = 𝑋 → ( ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑔 ‘ 𝑧 ) ∈ 𝑧 ) ↔ ∀ 𝑧 ∈ 𝑋 ( 𝑧 ≠ ∅ → ( 𝑔 ‘ 𝑧 ) ∈ 𝑧 ) ) ) |
20 |
19
|
exbidv |
⊢ ( 𝑥 = 𝑋 → ( ∃ 𝑔 ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑔 ‘ 𝑧 ) ∈ 𝑧 ) ↔ ∃ 𝑔 ∀ 𝑧 ∈ 𝑋 ( 𝑧 ≠ ∅ → ( 𝑔 ‘ 𝑧 ) ∈ 𝑧 ) ) ) |
21 |
18 20
|
imbi12d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝑥 ≈ ω → ∃ 𝑔 ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑔 ‘ 𝑧 ) ∈ 𝑧 ) ) ↔ ( 𝑋 ≈ ω → ∃ 𝑔 ∀ 𝑧 ∈ 𝑋 ( 𝑧 ≠ ∅ → ( 𝑔 ‘ 𝑧 ) ∈ 𝑧 ) ) ) ) |
22 |
|
ax-cc |
⊢ ( 𝑥 ≈ ω → ∃ 𝑔 ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑔 ‘ 𝑧 ) ∈ 𝑧 ) ) |
23 |
21 22
|
vtoclg |
⊢ ( 𝑋 ∈ V → ( 𝑋 ≈ ω → ∃ 𝑔 ∀ 𝑧 ∈ 𝑋 ( 𝑧 ≠ ∅ → ( 𝑔 ‘ 𝑧 ) ∈ 𝑧 ) ) ) |
24 |
16 17 23
|
sylc |
⊢ ( ( 𝜑 ∧ 𝑋 ≈ ω ) → ∃ 𝑔 ∀ 𝑧 ∈ 𝑋 ( 𝑧 ≠ ∅ → ( 𝑔 ‘ 𝑧 ) ∈ 𝑧 ) ) |
25 |
15
|
mptexd |
⊢ ( 𝜑 → ( 𝑧 ∈ 𝑋 ↦ ( 𝑔 ‘ 𝑧 ) ) ∈ V ) |
26 |
25
|
adantr |
⊢ ( ( 𝜑 ∧ ∀ 𝑧 ∈ 𝑋 ( 𝑧 ≠ ∅ → ( 𝑔 ‘ 𝑧 ) ∈ 𝑧 ) ) → ( 𝑧 ∈ 𝑋 ↦ ( 𝑔 ‘ 𝑧 ) ) ∈ V ) |
27 |
|
fvex |
⊢ ( 𝑔 ‘ 𝑧 ) ∈ V |
28 |
27
|
rgenw |
⊢ ∀ 𝑧 ∈ 𝑋 ( 𝑔 ‘ 𝑧 ) ∈ V |
29 |
|
eqid |
⊢ ( 𝑧 ∈ 𝑋 ↦ ( 𝑔 ‘ 𝑧 ) ) = ( 𝑧 ∈ 𝑋 ↦ ( 𝑔 ‘ 𝑧 ) ) |
30 |
29
|
fnmpt |
⊢ ( ∀ 𝑧 ∈ 𝑋 ( 𝑔 ‘ 𝑧 ) ∈ V → ( 𝑧 ∈ 𝑋 ↦ ( 𝑔 ‘ 𝑧 ) ) Fn 𝑋 ) |
31 |
28 30
|
ax-mp |
⊢ ( 𝑧 ∈ 𝑋 ↦ ( 𝑔 ‘ 𝑧 ) ) Fn 𝑋 |
32 |
31
|
a1i |
⊢ ( ( 𝜑 ∧ ∀ 𝑧 ∈ 𝑋 ( 𝑧 ≠ ∅ → ( 𝑔 ‘ 𝑧 ) ∈ 𝑧 ) ) → ( 𝑧 ∈ 𝑋 ↦ ( 𝑔 ‘ 𝑧 ) ) Fn 𝑋 ) |
33 |
|
nfv |
⊢ Ⅎ 𝑧 𝜑 |
34 |
|
nfra1 |
⊢ Ⅎ 𝑧 ∀ 𝑧 ∈ 𝑋 ( 𝑧 ≠ ∅ → ( 𝑔 ‘ 𝑧 ) ∈ 𝑧 ) |
35 |
33 34
|
nfan |
⊢ Ⅎ 𝑧 ( 𝜑 ∧ ∀ 𝑧 ∈ 𝑋 ( 𝑧 ≠ ∅ → ( 𝑔 ‘ 𝑧 ) ∈ 𝑧 ) ) |
36 |
|
id |
⊢ ( 𝑧 ∈ 𝑋 → 𝑧 ∈ 𝑋 ) |
37 |
27
|
a1i |
⊢ ( 𝑧 ∈ 𝑋 → ( 𝑔 ‘ 𝑧 ) ∈ V ) |
38 |
29
|
fvmpt2 |
⊢ ( ( 𝑧 ∈ 𝑋 ∧ ( 𝑔 ‘ 𝑧 ) ∈ V ) → ( ( 𝑧 ∈ 𝑋 ↦ ( 𝑔 ‘ 𝑧 ) ) ‘ 𝑧 ) = ( 𝑔 ‘ 𝑧 ) ) |
39 |
36 37 38
|
syl2anc |
⊢ ( 𝑧 ∈ 𝑋 → ( ( 𝑧 ∈ 𝑋 ↦ ( 𝑔 ‘ 𝑧 ) ) ‘ 𝑧 ) = ( 𝑔 ‘ 𝑧 ) ) |
40 |
39
|
adantl |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑧 ∈ 𝑋 ( 𝑧 ≠ ∅ → ( 𝑔 ‘ 𝑧 ) ∈ 𝑧 ) ) ∧ 𝑧 ∈ 𝑋 ) → ( ( 𝑧 ∈ 𝑋 ↦ ( 𝑔 ‘ 𝑧 ) ) ‘ 𝑧 ) = ( 𝑔 ‘ 𝑧 ) ) |
41 |
|
rspa |
⊢ ( ( ∀ 𝑧 ∈ 𝑋 ( 𝑧 ≠ ∅ → ( 𝑔 ‘ 𝑧 ) ∈ 𝑧 ) ∧ 𝑧 ∈ 𝑋 ) → ( 𝑧 ≠ ∅ → ( 𝑔 ‘ 𝑧 ) ∈ 𝑧 ) ) |
42 |
41
|
adantll |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑧 ∈ 𝑋 ( 𝑧 ≠ ∅ → ( 𝑔 ‘ 𝑧 ) ∈ 𝑧 ) ) ∧ 𝑧 ∈ 𝑋 ) → ( 𝑧 ≠ ∅ → ( 𝑔 ‘ 𝑧 ) ∈ 𝑧 ) ) |
43 |
2
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑧 ∈ 𝑋 ( 𝑧 ≠ ∅ → ( 𝑔 ‘ 𝑧 ) ∈ 𝑧 ) ) ∧ 𝑧 ∈ 𝑋 ) → 𝑧 ≠ ∅ ) |
44 |
|
id |
⊢ ( ( 𝑧 ≠ ∅ → ( 𝑔 ‘ 𝑧 ) ∈ 𝑧 ) → ( 𝑧 ≠ ∅ → ( 𝑔 ‘ 𝑧 ) ∈ 𝑧 ) ) |
45 |
42 43 44
|
sylc |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑧 ∈ 𝑋 ( 𝑧 ≠ ∅ → ( 𝑔 ‘ 𝑧 ) ∈ 𝑧 ) ) ∧ 𝑧 ∈ 𝑋 ) → ( 𝑔 ‘ 𝑧 ) ∈ 𝑧 ) |
46 |
40 45
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑧 ∈ 𝑋 ( 𝑧 ≠ ∅ → ( 𝑔 ‘ 𝑧 ) ∈ 𝑧 ) ) ∧ 𝑧 ∈ 𝑋 ) → ( ( 𝑧 ∈ 𝑋 ↦ ( 𝑔 ‘ 𝑧 ) ) ‘ 𝑧 ) ∈ 𝑧 ) |
47 |
46
|
ex |
⊢ ( ( 𝜑 ∧ ∀ 𝑧 ∈ 𝑋 ( 𝑧 ≠ ∅ → ( 𝑔 ‘ 𝑧 ) ∈ 𝑧 ) ) → ( 𝑧 ∈ 𝑋 → ( ( 𝑧 ∈ 𝑋 ↦ ( 𝑔 ‘ 𝑧 ) ) ‘ 𝑧 ) ∈ 𝑧 ) ) |
48 |
35 47
|
ralrimi |
⊢ ( ( 𝜑 ∧ ∀ 𝑧 ∈ 𝑋 ( 𝑧 ≠ ∅ → ( 𝑔 ‘ 𝑧 ) ∈ 𝑧 ) ) → ∀ 𝑧 ∈ 𝑋 ( ( 𝑧 ∈ 𝑋 ↦ ( 𝑔 ‘ 𝑧 ) ) ‘ 𝑧 ) ∈ 𝑧 ) |
49 |
32 48
|
jca |
⊢ ( ( 𝜑 ∧ ∀ 𝑧 ∈ 𝑋 ( 𝑧 ≠ ∅ → ( 𝑔 ‘ 𝑧 ) ∈ 𝑧 ) ) → ( ( 𝑧 ∈ 𝑋 ↦ ( 𝑔 ‘ 𝑧 ) ) Fn 𝑋 ∧ ∀ 𝑧 ∈ 𝑋 ( ( 𝑧 ∈ 𝑋 ↦ ( 𝑔 ‘ 𝑧 ) ) ‘ 𝑧 ) ∈ 𝑧 ) ) |
50 |
|
fneq1 |
⊢ ( 𝑓 = ( 𝑧 ∈ 𝑋 ↦ ( 𝑔 ‘ 𝑧 ) ) → ( 𝑓 Fn 𝑋 ↔ ( 𝑧 ∈ 𝑋 ↦ ( 𝑔 ‘ 𝑧 ) ) Fn 𝑋 ) ) |
51 |
|
nfcv |
⊢ Ⅎ 𝑧 𝑓 |
52 |
|
nfmpt1 |
⊢ Ⅎ 𝑧 ( 𝑧 ∈ 𝑋 ↦ ( 𝑔 ‘ 𝑧 ) ) |
53 |
51 52
|
nfeq |
⊢ Ⅎ 𝑧 𝑓 = ( 𝑧 ∈ 𝑋 ↦ ( 𝑔 ‘ 𝑧 ) ) |
54 |
|
fveq1 |
⊢ ( 𝑓 = ( 𝑧 ∈ 𝑋 ↦ ( 𝑔 ‘ 𝑧 ) ) → ( 𝑓 ‘ 𝑧 ) = ( ( 𝑧 ∈ 𝑋 ↦ ( 𝑔 ‘ 𝑧 ) ) ‘ 𝑧 ) ) |
55 |
54
|
eleq1d |
⊢ ( 𝑓 = ( 𝑧 ∈ 𝑋 ↦ ( 𝑔 ‘ 𝑧 ) ) → ( ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ↔ ( ( 𝑧 ∈ 𝑋 ↦ ( 𝑔 ‘ 𝑧 ) ) ‘ 𝑧 ) ∈ 𝑧 ) ) |
56 |
53 55
|
ralbid |
⊢ ( 𝑓 = ( 𝑧 ∈ 𝑋 ↦ ( 𝑔 ‘ 𝑧 ) ) → ( ∀ 𝑧 ∈ 𝑋 ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ↔ ∀ 𝑧 ∈ 𝑋 ( ( 𝑧 ∈ 𝑋 ↦ ( 𝑔 ‘ 𝑧 ) ) ‘ 𝑧 ) ∈ 𝑧 ) ) |
57 |
50 56
|
anbi12d |
⊢ ( 𝑓 = ( 𝑧 ∈ 𝑋 ↦ ( 𝑔 ‘ 𝑧 ) ) → ( ( 𝑓 Fn 𝑋 ∧ ∀ 𝑧 ∈ 𝑋 ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ↔ ( ( 𝑧 ∈ 𝑋 ↦ ( 𝑔 ‘ 𝑧 ) ) Fn 𝑋 ∧ ∀ 𝑧 ∈ 𝑋 ( ( 𝑧 ∈ 𝑋 ↦ ( 𝑔 ‘ 𝑧 ) ) ‘ 𝑧 ) ∈ 𝑧 ) ) ) |
58 |
57
|
spcegv |
⊢ ( ( 𝑧 ∈ 𝑋 ↦ ( 𝑔 ‘ 𝑧 ) ) ∈ V → ( ( ( 𝑧 ∈ 𝑋 ↦ ( 𝑔 ‘ 𝑧 ) ) Fn 𝑋 ∧ ∀ 𝑧 ∈ 𝑋 ( ( 𝑧 ∈ 𝑋 ↦ ( 𝑔 ‘ 𝑧 ) ) ‘ 𝑧 ) ∈ 𝑧 ) → ∃ 𝑓 ( 𝑓 Fn 𝑋 ∧ ∀ 𝑧 ∈ 𝑋 ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ) ) |
59 |
26 49 58
|
sylc |
⊢ ( ( 𝜑 ∧ ∀ 𝑧 ∈ 𝑋 ( 𝑧 ≠ ∅ → ( 𝑔 ‘ 𝑧 ) ∈ 𝑧 ) ) → ∃ 𝑓 ( 𝑓 Fn 𝑋 ∧ ∀ 𝑧 ∈ 𝑋 ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ) |
60 |
59
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑋 ≈ ω ) ∧ ∀ 𝑧 ∈ 𝑋 ( 𝑧 ≠ ∅ → ( 𝑔 ‘ 𝑧 ) ∈ 𝑧 ) ) → ∃ 𝑓 ( 𝑓 Fn 𝑋 ∧ ∀ 𝑧 ∈ 𝑋 ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ) |
61 |
60
|
ex |
⊢ ( ( 𝜑 ∧ 𝑋 ≈ ω ) → ( ∀ 𝑧 ∈ 𝑋 ( 𝑧 ≠ ∅ → ( 𝑔 ‘ 𝑧 ) ∈ 𝑧 ) → ∃ 𝑓 ( 𝑓 Fn 𝑋 ∧ ∀ 𝑧 ∈ 𝑋 ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ) ) |
62 |
61
|
exlimdv |
⊢ ( ( 𝜑 ∧ 𝑋 ≈ ω ) → ( ∃ 𝑔 ∀ 𝑧 ∈ 𝑋 ( 𝑧 ≠ ∅ → ( 𝑔 ‘ 𝑧 ) ∈ 𝑧 ) → ∃ 𝑓 ( 𝑓 Fn 𝑋 ∧ ∀ 𝑧 ∈ 𝑋 ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ) ) |
63 |
24 62
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑋 ≈ ω ) → ∃ 𝑓 ( 𝑓 Fn 𝑋 ∧ ∀ 𝑧 ∈ 𝑋 ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ) |
64 |
13 63
|
syldan |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 ∈ Fin ) → ∃ 𝑓 ( 𝑓 Fn 𝑋 ∧ ∀ 𝑧 ∈ 𝑋 ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ) |
65 |
6 64
|
pm2.61dan |
⊢ ( 𝜑 → ∃ 𝑓 ( 𝑓 Fn 𝑋 ∧ ∀ 𝑧 ∈ 𝑋 ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ) |