Metamath Proof Explorer


Theorem axcnre

Description: A complex number can be expressed in terms of two reals. Definition 10-1.1(v) of Gleason p. 130. Axiom 17 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-cnre . (Contributed by NM, 13-May-1996) (New usage is discouraged.)

Ref Expression
Assertion axcnre ( 𝐴 ∈ ℂ → ∃ 𝑥 ∈ ℝ ∃ 𝑦 ∈ ℝ 𝐴 = ( 𝑥 + ( i · 𝑦 ) ) )

Proof

Step Hyp Ref Expression
1 df-c ℂ = ( R × R )
2 eqeq1 ( ⟨ 𝑧 , 𝑤 ⟩ = 𝐴 → ( ⟨ 𝑧 , 𝑤 ⟩ = ( 𝑥 + ( i · 𝑦 ) ) ↔ 𝐴 = ( 𝑥 + ( i · 𝑦 ) ) ) )
3 2 2rexbidv ( ⟨ 𝑧 , 𝑤 ⟩ = 𝐴 → ( ∃ 𝑥 ∈ ℝ ∃ 𝑦 ∈ ℝ ⟨ 𝑧 , 𝑤 ⟩ = ( 𝑥 + ( i · 𝑦 ) ) ↔ ∃ 𝑥 ∈ ℝ ∃ 𝑦 ∈ ℝ 𝐴 = ( 𝑥 + ( i · 𝑦 ) ) ) )
4 opelreal ( ⟨ 𝑧 , 0R ⟩ ∈ ℝ ↔ 𝑧R )
5 opelreal ( ⟨ 𝑤 , 0R ⟩ ∈ ℝ ↔ 𝑤R )
6 4 5 anbi12i ( ( ⟨ 𝑧 , 0R ⟩ ∈ ℝ ∧ ⟨ 𝑤 , 0R ⟩ ∈ ℝ ) ↔ ( 𝑧R𝑤R ) )
7 6 biimpri ( ( 𝑧R𝑤R ) → ( ⟨ 𝑧 , 0R ⟩ ∈ ℝ ∧ ⟨ 𝑤 , 0R ⟩ ∈ ℝ ) )
8 df-i i = ⟨ 0R , 1R
9 8 oveq1i ( i · ⟨ 𝑤 , 0R ⟩ ) = ( ⟨ 0R , 1R ⟩ · ⟨ 𝑤 , 0R ⟩ )
10 0r 0RR
11 1sr 1RR
12 mulcnsr ( ( ( 0RR ∧ 1RR ) ∧ ( 𝑤R ∧ 0RR ) ) → ( ⟨ 0R , 1R ⟩ · ⟨ 𝑤 , 0R ⟩ ) = ⟨ ( ( 0R ·R 𝑤 ) +R ( -1R ·R ( 1R ·R 0R ) ) ) , ( ( 1R ·R 𝑤 ) +R ( 0R ·R 0R ) ) ⟩ )
13 10 11 12 mpanl12 ( ( 𝑤R ∧ 0RR ) → ( ⟨ 0R , 1R ⟩ · ⟨ 𝑤 , 0R ⟩ ) = ⟨ ( ( 0R ·R 𝑤 ) +R ( -1R ·R ( 1R ·R 0R ) ) ) , ( ( 1R ·R 𝑤 ) +R ( 0R ·R 0R ) ) ⟩ )
14 10 13 mpan2 ( 𝑤R → ( ⟨ 0R , 1R ⟩ · ⟨ 𝑤 , 0R ⟩ ) = ⟨ ( ( 0R ·R 𝑤 ) +R ( -1R ·R ( 1R ·R 0R ) ) ) , ( ( 1R ·R 𝑤 ) +R ( 0R ·R 0R ) ) ⟩ )
15 mulcomsr ( 0R ·R 𝑤 ) = ( 𝑤 ·R 0R )
16 00sr ( 𝑤R → ( 𝑤 ·R 0R ) = 0R )
17 15 16 eqtrid ( 𝑤R → ( 0R ·R 𝑤 ) = 0R )
18 17 oveq1d ( 𝑤R → ( ( 0R ·R 𝑤 ) +R ( -1R ·R ( 1R ·R 0R ) ) ) = ( 0R +R ( -1R ·R ( 1R ·R 0R ) ) ) )
19 00sr ( 1RR → ( 1R ·R 0R ) = 0R )
20 11 19 ax-mp ( 1R ·R 0R ) = 0R
21 20 oveq2i ( -1R ·R ( 1R ·R 0R ) ) = ( -1R ·R 0R )
22 m1r -1RR
23 00sr ( -1RR → ( -1R ·R 0R ) = 0R )
24 22 23 ax-mp ( -1R ·R 0R ) = 0R
25 21 24 eqtri ( -1R ·R ( 1R ·R 0R ) ) = 0R
26 25 oveq2i ( 0R +R ( -1R ·R ( 1R ·R 0R ) ) ) = ( 0R +R 0R )
27 0idsr ( 0RR → ( 0R +R 0R ) = 0R )
28 10 27 ax-mp ( 0R +R 0R ) = 0R
29 26 28 eqtri ( 0R +R ( -1R ·R ( 1R ·R 0R ) ) ) = 0R
30 18 29 eqtrdi ( 𝑤R → ( ( 0R ·R 𝑤 ) +R ( -1R ·R ( 1R ·R 0R ) ) ) = 0R )
31 mulcomsr ( 1R ·R 𝑤 ) = ( 𝑤 ·R 1R )
32 1idsr ( 𝑤R → ( 𝑤 ·R 1R ) = 𝑤 )
33 31 32 eqtrid ( 𝑤R → ( 1R ·R 𝑤 ) = 𝑤 )
34 33 oveq1d ( 𝑤R → ( ( 1R ·R 𝑤 ) +R ( 0R ·R 0R ) ) = ( 𝑤 +R ( 0R ·R 0R ) ) )
35 00sr ( 0RR → ( 0R ·R 0R ) = 0R )
36 10 35 ax-mp ( 0R ·R 0R ) = 0R
37 36 oveq2i ( 𝑤 +R ( 0R ·R 0R ) ) = ( 𝑤 +R 0R )
38 0idsr ( 𝑤R → ( 𝑤 +R 0R ) = 𝑤 )
39 37 38 eqtrid ( 𝑤R → ( 𝑤 +R ( 0R ·R 0R ) ) = 𝑤 )
40 34 39 eqtrd ( 𝑤R → ( ( 1R ·R 𝑤 ) +R ( 0R ·R 0R ) ) = 𝑤 )
41 30 40 opeq12d ( 𝑤R → ⟨ ( ( 0R ·R 𝑤 ) +R ( -1R ·R ( 1R ·R 0R ) ) ) , ( ( 1R ·R 𝑤 ) +R ( 0R ·R 0R ) ) ⟩ = ⟨ 0R , 𝑤 ⟩ )
42 14 41 eqtrd ( 𝑤R → ( ⟨ 0R , 1R ⟩ · ⟨ 𝑤 , 0R ⟩ ) = ⟨ 0R , 𝑤 ⟩ )
43 9 42 eqtrid ( 𝑤R → ( i · ⟨ 𝑤 , 0R ⟩ ) = ⟨ 0R , 𝑤 ⟩ )
44 43 oveq2d ( 𝑤R → ( ⟨ 𝑧 , 0R ⟩ + ( i · ⟨ 𝑤 , 0R ⟩ ) ) = ( ⟨ 𝑧 , 0R ⟩ + ⟨ 0R , 𝑤 ⟩ ) )
45 44 adantl ( ( 𝑧R𝑤R ) → ( ⟨ 𝑧 , 0R ⟩ + ( i · ⟨ 𝑤 , 0R ⟩ ) ) = ( ⟨ 𝑧 , 0R ⟩ + ⟨ 0R , 𝑤 ⟩ ) )
46 addcnsr ( ( ( 𝑧R ∧ 0RR ) ∧ ( 0RR𝑤R ) ) → ( ⟨ 𝑧 , 0R ⟩ + ⟨ 0R , 𝑤 ⟩ ) = ⟨ ( 𝑧 +R 0R ) , ( 0R +R 𝑤 ) ⟩ )
47 10 46 mpanl2 ( ( 𝑧R ∧ ( 0RR𝑤R ) ) → ( ⟨ 𝑧 , 0R ⟩ + ⟨ 0R , 𝑤 ⟩ ) = ⟨ ( 𝑧 +R 0R ) , ( 0R +R 𝑤 ) ⟩ )
48 10 47 mpanr1 ( ( 𝑧R𝑤R ) → ( ⟨ 𝑧 , 0R ⟩ + ⟨ 0R , 𝑤 ⟩ ) = ⟨ ( 𝑧 +R 0R ) , ( 0R +R 𝑤 ) ⟩ )
49 0idsr ( 𝑧R → ( 𝑧 +R 0R ) = 𝑧 )
50 addcomsr ( 0R +R 𝑤 ) = ( 𝑤 +R 0R )
51 50 38 eqtrid ( 𝑤R → ( 0R +R 𝑤 ) = 𝑤 )
52 opeq12 ( ( ( 𝑧 +R 0R ) = 𝑧 ∧ ( 0R +R 𝑤 ) = 𝑤 ) → ⟨ ( 𝑧 +R 0R ) , ( 0R +R 𝑤 ) ⟩ = ⟨ 𝑧 , 𝑤 ⟩ )
53 49 51 52 syl2an ( ( 𝑧R𝑤R ) → ⟨ ( 𝑧 +R 0R ) , ( 0R +R 𝑤 ) ⟩ = ⟨ 𝑧 , 𝑤 ⟩ )
54 45 48 53 3eqtrrd ( ( 𝑧R𝑤R ) → ⟨ 𝑧 , 𝑤 ⟩ = ( ⟨ 𝑧 , 0R ⟩ + ( i · ⟨ 𝑤 , 0R ⟩ ) ) )
55 opex 𝑧 , 0R ⟩ ∈ V
56 opex 𝑤 , 0R ⟩ ∈ V
57 eleq1 ( 𝑥 = ⟨ 𝑧 , 0R ⟩ → ( 𝑥 ∈ ℝ ↔ ⟨ 𝑧 , 0R ⟩ ∈ ℝ ) )
58 eleq1 ( 𝑦 = ⟨ 𝑤 , 0R ⟩ → ( 𝑦 ∈ ℝ ↔ ⟨ 𝑤 , 0R ⟩ ∈ ℝ ) )
59 57 58 bi2anan9 ( ( 𝑥 = ⟨ 𝑧 , 0R ⟩ ∧ 𝑦 = ⟨ 𝑤 , 0R ⟩ ) → ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ↔ ( ⟨ 𝑧 , 0R ⟩ ∈ ℝ ∧ ⟨ 𝑤 , 0R ⟩ ∈ ℝ ) ) )
60 oveq1 ( 𝑥 = ⟨ 𝑧 , 0R ⟩ → ( 𝑥 + ( i · 𝑦 ) ) = ( ⟨ 𝑧 , 0R ⟩ + ( i · 𝑦 ) ) )
61 oveq2 ( 𝑦 = ⟨ 𝑤 , 0R ⟩ → ( i · 𝑦 ) = ( i · ⟨ 𝑤 , 0R ⟩ ) )
62 61 oveq2d ( 𝑦 = ⟨ 𝑤 , 0R ⟩ → ( ⟨ 𝑧 , 0R ⟩ + ( i · 𝑦 ) ) = ( ⟨ 𝑧 , 0R ⟩ + ( i · ⟨ 𝑤 , 0R ⟩ ) ) )
63 60 62 sylan9eq ( ( 𝑥 = ⟨ 𝑧 , 0R ⟩ ∧ 𝑦 = ⟨ 𝑤 , 0R ⟩ ) → ( 𝑥 + ( i · 𝑦 ) ) = ( ⟨ 𝑧 , 0R ⟩ + ( i · ⟨ 𝑤 , 0R ⟩ ) ) )
64 63 eqeq2d ( ( 𝑥 = ⟨ 𝑧 , 0R ⟩ ∧ 𝑦 = ⟨ 𝑤 , 0R ⟩ ) → ( ⟨ 𝑧 , 𝑤 ⟩ = ( 𝑥 + ( i · 𝑦 ) ) ↔ ⟨ 𝑧 , 𝑤 ⟩ = ( ⟨ 𝑧 , 0R ⟩ + ( i · ⟨ 𝑤 , 0R ⟩ ) ) ) )
65 59 64 anbi12d ( ( 𝑥 = ⟨ 𝑧 , 0R ⟩ ∧ 𝑦 = ⟨ 𝑤 , 0R ⟩ ) → ( ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ⟨ 𝑧 , 𝑤 ⟩ = ( 𝑥 + ( i · 𝑦 ) ) ) ↔ ( ( ⟨ 𝑧 , 0R ⟩ ∈ ℝ ∧ ⟨ 𝑤 , 0R ⟩ ∈ ℝ ) ∧ ⟨ 𝑧 , 𝑤 ⟩ = ( ⟨ 𝑧 , 0R ⟩ + ( i · ⟨ 𝑤 , 0R ⟩ ) ) ) ) )
66 55 56 65 spc2ev ( ( ( ⟨ 𝑧 , 0R ⟩ ∈ ℝ ∧ ⟨ 𝑤 , 0R ⟩ ∈ ℝ ) ∧ ⟨ 𝑧 , 𝑤 ⟩ = ( ⟨ 𝑧 , 0R ⟩ + ( i · ⟨ 𝑤 , 0R ⟩ ) ) ) → ∃ 𝑥𝑦 ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ⟨ 𝑧 , 𝑤 ⟩ = ( 𝑥 + ( i · 𝑦 ) ) ) )
67 7 54 66 syl2anc ( ( 𝑧R𝑤R ) → ∃ 𝑥𝑦 ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ⟨ 𝑧 , 𝑤 ⟩ = ( 𝑥 + ( i · 𝑦 ) ) ) )
68 r2ex ( ∃ 𝑥 ∈ ℝ ∃ 𝑦 ∈ ℝ ⟨ 𝑧 , 𝑤 ⟩ = ( 𝑥 + ( i · 𝑦 ) ) ↔ ∃ 𝑥𝑦 ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ⟨ 𝑧 , 𝑤 ⟩ = ( 𝑥 + ( i · 𝑦 ) ) ) )
69 67 68 sylibr ( ( 𝑧R𝑤R ) → ∃ 𝑥 ∈ ℝ ∃ 𝑦 ∈ ℝ ⟨ 𝑧 , 𝑤 ⟩ = ( 𝑥 + ( i · 𝑦 ) ) )
70 1 3 69 optocl ( 𝐴 ∈ ℂ → ∃ 𝑥 ∈ ℝ ∃ 𝑦 ∈ ℝ 𝐴 = ( 𝑥 + ( i · 𝑦 ) ) )