| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rzal |
⊢ ( 𝐵 = ∅ → ∀ 𝑦 ∈ 𝐵 𝑍 Btwn 〈 𝑥 , 𝑦 〉 ) |
| 2 |
1
|
ralrimivw |
⊢ ( 𝐵 = ∅ → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑍 Btwn 〈 𝑥 , 𝑦 〉 ) |
| 3 |
|
breq1 |
⊢ ( 𝑏 = 𝑍 → ( 𝑏 Btwn 〈 𝑥 , 𝑦 〉 ↔ 𝑍 Btwn 〈 𝑥 , 𝑦 〉 ) ) |
| 4 |
3
|
2ralbidv |
⊢ ( 𝑏 = 𝑍 → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑏 Btwn 〈 𝑥 , 𝑦 〉 ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑍 Btwn 〈 𝑥 , 𝑦 〉 ) ) |
| 5 |
4
|
rspcev |
⊢ ( ( 𝑍 ∈ ( 𝔼 ‘ 𝑁 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑍 Btwn 〈 𝑥 , 𝑦 〉 ) → ∃ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑏 Btwn 〈 𝑥 , 𝑦 〉 ) |
| 6 |
5
|
expcom |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑍 Btwn 〈 𝑥 , 𝑦 〉 → ( 𝑍 ∈ ( 𝔼 ‘ 𝑁 ) → ∃ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑏 Btwn 〈 𝑥 , 𝑦 〉 ) ) |
| 7 |
2 6
|
syl |
⊢ ( 𝐵 = ∅ → ( 𝑍 ∈ ( 𝔼 ‘ 𝑁 ) → ∃ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑏 Btwn 〈 𝑥 , 𝑦 〉 ) ) |
| 8 |
7
|
adantld |
⊢ ( 𝐵 = ∅ → ( ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ⊆ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ⊆ ( 𝔼 ‘ 𝑁 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 Btwn 〈 𝑍 , 𝑦 〉 ) ) ∧ 𝑍 ∈ ( 𝔼 ‘ 𝑁 ) ) → ∃ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑏 Btwn 〈 𝑥 , 𝑦 〉 ) ) |
| 9 |
8
|
adantld |
⊢ ( 𝐵 = ∅ → ( ( ( 𝑢 ∈ 𝐴 ∧ 𝑍 ≠ 𝑢 ) ∧ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ⊆ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ⊆ ( 𝔼 ‘ 𝑁 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 Btwn 〈 𝑍 , 𝑦 〉 ) ) ∧ 𝑍 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ∃ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑏 Btwn 〈 𝑥 , 𝑦 〉 ) ) |
| 10 |
|
simprrl |
⊢ ( ( 𝐵 ≠ ∅ ∧ ( ( 𝑢 ∈ 𝐴 ∧ 𝑍 ≠ 𝑢 ) ∧ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ⊆ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ⊆ ( 𝔼 ‘ 𝑁 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 Btwn 〈 𝑍 , 𝑦 〉 ) ) ∧ 𝑍 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ) → ( 𝑁 ∈ ℕ ∧ ( 𝐴 ⊆ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ⊆ ( 𝔼 ‘ 𝑁 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 Btwn 〈 𝑍 , 𝑦 〉 ) ) ) |
| 11 |
|
simprrr |
⊢ ( ( 𝐵 ≠ ∅ ∧ ( ( 𝑢 ∈ 𝐴 ∧ 𝑍 ≠ 𝑢 ) ∧ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ⊆ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ⊆ ( 𝔼 ‘ 𝑁 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 Btwn 〈 𝑍 , 𝑦 〉 ) ) ∧ 𝑍 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ) → 𝑍 ∈ ( 𝔼 ‘ 𝑁 ) ) |
| 12 |
|
simprll |
⊢ ( ( 𝐵 ≠ ∅ ∧ ( ( 𝑢 ∈ 𝐴 ∧ 𝑍 ≠ 𝑢 ) ∧ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ⊆ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ⊆ ( 𝔼 ‘ 𝑁 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 Btwn 〈 𝑍 , 𝑦 〉 ) ) ∧ 𝑍 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ) → 𝑢 ∈ 𝐴 ) |
| 13 |
|
simpl |
⊢ ( ( 𝐵 ≠ ∅ ∧ ( ( 𝑢 ∈ 𝐴 ∧ 𝑍 ≠ 𝑢 ) ∧ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ⊆ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ⊆ ( 𝔼 ‘ 𝑁 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 Btwn 〈 𝑍 , 𝑦 〉 ) ) ∧ 𝑍 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ) → 𝐵 ≠ ∅ ) |
| 14 |
11 12 13
|
3jca |
⊢ ( ( 𝐵 ≠ ∅ ∧ ( ( 𝑢 ∈ 𝐴 ∧ 𝑍 ≠ 𝑢 ) ∧ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ⊆ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ⊆ ( 𝔼 ‘ 𝑁 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 Btwn 〈 𝑍 , 𝑦 〉 ) ) ∧ 𝑍 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ) → ( 𝑍 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑢 ∈ 𝐴 ∧ 𝐵 ≠ ∅ ) ) |
| 15 |
|
simprlr |
⊢ ( ( 𝐵 ≠ ∅ ∧ ( ( 𝑢 ∈ 𝐴 ∧ 𝑍 ≠ 𝑢 ) ∧ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ⊆ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ⊆ ( 𝔼 ‘ 𝑁 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 Btwn 〈 𝑍 , 𝑦 〉 ) ) ∧ 𝑍 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ) → 𝑍 ≠ 𝑢 ) |
| 16 |
|
axcontlem11 |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ⊆ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ⊆ ( 𝔼 ‘ 𝑁 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 Btwn 〈 𝑍 , 𝑦 〉 ) ) ∧ ( ( 𝑍 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑢 ∈ 𝐴 ∧ 𝐵 ≠ ∅ ) ∧ 𝑍 ≠ 𝑢 ) ) → ∃ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑏 Btwn 〈 𝑥 , 𝑦 〉 ) |
| 17 |
10 14 15 16
|
syl12anc |
⊢ ( ( 𝐵 ≠ ∅ ∧ ( ( 𝑢 ∈ 𝐴 ∧ 𝑍 ≠ 𝑢 ) ∧ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ⊆ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ⊆ ( 𝔼 ‘ 𝑁 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 Btwn 〈 𝑍 , 𝑦 〉 ) ) ∧ 𝑍 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ) → ∃ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑏 Btwn 〈 𝑥 , 𝑦 〉 ) |
| 18 |
17
|
ex |
⊢ ( 𝐵 ≠ ∅ → ( ( ( 𝑢 ∈ 𝐴 ∧ 𝑍 ≠ 𝑢 ) ∧ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ⊆ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ⊆ ( 𝔼 ‘ 𝑁 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 Btwn 〈 𝑍 , 𝑦 〉 ) ) ∧ 𝑍 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ∃ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑏 Btwn 〈 𝑥 , 𝑦 〉 ) ) |
| 19 |
9 18
|
pm2.61ine |
⊢ ( ( ( 𝑢 ∈ 𝐴 ∧ 𝑍 ≠ 𝑢 ) ∧ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ⊆ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ⊆ ( 𝔼 ‘ 𝑁 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 Btwn 〈 𝑍 , 𝑦 〉 ) ) ∧ 𝑍 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ∃ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑏 Btwn 〈 𝑥 , 𝑦 〉 ) |
| 20 |
19
|
ex |
⊢ ( ( 𝑢 ∈ 𝐴 ∧ 𝑍 ≠ 𝑢 ) → ( ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ⊆ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ⊆ ( 𝔼 ‘ 𝑁 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 Btwn 〈 𝑍 , 𝑦 〉 ) ) ∧ 𝑍 ∈ ( 𝔼 ‘ 𝑁 ) ) → ∃ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑏 Btwn 〈 𝑥 , 𝑦 〉 ) ) |
| 21 |
20
|
rexlimiva |
⊢ ( ∃ 𝑢 ∈ 𝐴 𝑍 ≠ 𝑢 → ( ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ⊆ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ⊆ ( 𝔼 ‘ 𝑁 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 Btwn 〈 𝑍 , 𝑦 〉 ) ) ∧ 𝑍 ∈ ( 𝔼 ‘ 𝑁 ) ) → ∃ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑏 Btwn 〈 𝑥 , 𝑦 〉 ) ) |
| 22 |
|
df-ne |
⊢ ( 𝑍 ≠ 𝑢 ↔ ¬ 𝑍 = 𝑢 ) |
| 23 |
22
|
con2bii |
⊢ ( 𝑍 = 𝑢 ↔ ¬ 𝑍 ≠ 𝑢 ) |
| 24 |
23
|
ralbii |
⊢ ( ∀ 𝑢 ∈ 𝐴 𝑍 = 𝑢 ↔ ∀ 𝑢 ∈ 𝐴 ¬ 𝑍 ≠ 𝑢 ) |
| 25 |
|
ralnex |
⊢ ( ∀ 𝑢 ∈ 𝐴 ¬ 𝑍 ≠ 𝑢 ↔ ¬ ∃ 𝑢 ∈ 𝐴 𝑍 ≠ 𝑢 ) |
| 26 |
24 25
|
bitri |
⊢ ( ∀ 𝑢 ∈ 𝐴 𝑍 = 𝑢 ↔ ¬ ∃ 𝑢 ∈ 𝐴 𝑍 ≠ 𝑢 ) |
| 27 |
|
simpr3 |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ⊆ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ⊆ ( 𝔼 ‘ 𝑁 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 Btwn 〈 𝑍 , 𝑦 〉 ) ) → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 Btwn 〈 𝑍 , 𝑦 〉 ) |
| 28 |
|
eqeq2 |
⊢ ( 𝑢 = 𝑥 → ( 𝑍 = 𝑢 ↔ 𝑍 = 𝑥 ) ) |
| 29 |
28
|
rspccva |
⊢ ( ( ∀ 𝑢 ∈ 𝐴 𝑍 = 𝑢 ∧ 𝑥 ∈ 𝐴 ) → 𝑍 = 𝑥 ) |
| 30 |
|
opeq1 |
⊢ ( 𝑍 = 𝑥 → 〈 𝑍 , 𝑦 〉 = 〈 𝑥 , 𝑦 〉 ) |
| 31 |
30
|
breq2d |
⊢ ( 𝑍 = 𝑥 → ( 𝑥 Btwn 〈 𝑍 , 𝑦 〉 ↔ 𝑥 Btwn 〈 𝑥 , 𝑦 〉 ) ) |
| 32 |
|
breq1 |
⊢ ( 𝑍 = 𝑥 → ( 𝑍 Btwn 〈 𝑥 , 𝑦 〉 ↔ 𝑥 Btwn 〈 𝑥 , 𝑦 〉 ) ) |
| 33 |
31 32
|
bitr4d |
⊢ ( 𝑍 = 𝑥 → ( 𝑥 Btwn 〈 𝑍 , 𝑦 〉 ↔ 𝑍 Btwn 〈 𝑥 , 𝑦 〉 ) ) |
| 34 |
33
|
ralbidv |
⊢ ( 𝑍 = 𝑥 → ( ∀ 𝑦 ∈ 𝐵 𝑥 Btwn 〈 𝑍 , 𝑦 〉 ↔ ∀ 𝑦 ∈ 𝐵 𝑍 Btwn 〈 𝑥 , 𝑦 〉 ) ) |
| 35 |
29 34
|
syl |
⊢ ( ( ∀ 𝑢 ∈ 𝐴 𝑍 = 𝑢 ∧ 𝑥 ∈ 𝐴 ) → ( ∀ 𝑦 ∈ 𝐵 𝑥 Btwn 〈 𝑍 , 𝑦 〉 ↔ ∀ 𝑦 ∈ 𝐵 𝑍 Btwn 〈 𝑥 , 𝑦 〉 ) ) |
| 36 |
35
|
ralbidva |
⊢ ( ∀ 𝑢 ∈ 𝐴 𝑍 = 𝑢 → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 Btwn 〈 𝑍 , 𝑦 〉 ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑍 Btwn 〈 𝑥 , 𝑦 〉 ) ) |
| 37 |
36
|
biimpa |
⊢ ( ( ∀ 𝑢 ∈ 𝐴 𝑍 = 𝑢 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 Btwn 〈 𝑍 , 𝑦 〉 ) → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑍 Btwn 〈 𝑥 , 𝑦 〉 ) |
| 38 |
27 37
|
sylan2 |
⊢ ( ( ∀ 𝑢 ∈ 𝐴 𝑍 = 𝑢 ∧ ( 𝑁 ∈ ℕ ∧ ( 𝐴 ⊆ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ⊆ ( 𝔼 ‘ 𝑁 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 Btwn 〈 𝑍 , 𝑦 〉 ) ) ) → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑍 Btwn 〈 𝑥 , 𝑦 〉 ) |
| 39 |
38 5
|
sylan2 |
⊢ ( ( 𝑍 ∈ ( 𝔼 ‘ 𝑁 ) ∧ ( ∀ 𝑢 ∈ 𝐴 𝑍 = 𝑢 ∧ ( 𝑁 ∈ ℕ ∧ ( 𝐴 ⊆ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ⊆ ( 𝔼 ‘ 𝑁 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 Btwn 〈 𝑍 , 𝑦 〉 ) ) ) ) → ∃ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑏 Btwn 〈 𝑥 , 𝑦 〉 ) |
| 40 |
39
|
ancoms |
⊢ ( ( ( ∀ 𝑢 ∈ 𝐴 𝑍 = 𝑢 ∧ ( 𝑁 ∈ ℕ ∧ ( 𝐴 ⊆ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ⊆ ( 𝔼 ‘ 𝑁 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 Btwn 〈 𝑍 , 𝑦 〉 ) ) ) ∧ 𝑍 ∈ ( 𝔼 ‘ 𝑁 ) ) → ∃ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑏 Btwn 〈 𝑥 , 𝑦 〉 ) |
| 41 |
40
|
expl |
⊢ ( ∀ 𝑢 ∈ 𝐴 𝑍 = 𝑢 → ( ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ⊆ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ⊆ ( 𝔼 ‘ 𝑁 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 Btwn 〈 𝑍 , 𝑦 〉 ) ) ∧ 𝑍 ∈ ( 𝔼 ‘ 𝑁 ) ) → ∃ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑏 Btwn 〈 𝑥 , 𝑦 〉 ) ) |
| 42 |
26 41
|
sylbir |
⊢ ( ¬ ∃ 𝑢 ∈ 𝐴 𝑍 ≠ 𝑢 → ( ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ⊆ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ⊆ ( 𝔼 ‘ 𝑁 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 Btwn 〈 𝑍 , 𝑦 〉 ) ) ∧ 𝑍 ∈ ( 𝔼 ‘ 𝑁 ) ) → ∃ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑏 Btwn 〈 𝑥 , 𝑦 〉 ) ) |
| 43 |
21 42
|
pm2.61i |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ⊆ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ⊆ ( 𝔼 ‘ 𝑁 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 Btwn 〈 𝑍 , 𝑦 〉 ) ) ∧ 𝑍 ∈ ( 𝔼 ‘ 𝑁 ) ) → ∃ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑏 Btwn 〈 𝑥 , 𝑦 〉 ) |