| Step | Hyp | Ref | Expression | 
						
							| 1 |  | breq2 | ⊢ ( 𝑤  =  𝑧  →  ( 𝑢 𝑥 𝑤  ↔  𝑢 𝑥 𝑧 ) ) | 
						
							| 2 | 1 | cbvabv | ⊢ { 𝑤  ∣  𝑢 𝑥 𝑤 }  =  { 𝑧  ∣  𝑢 𝑥 𝑧 } | 
						
							| 3 |  | breq1 | ⊢ ( 𝑢  =  𝑣  →  ( 𝑢 𝑥 𝑧  ↔  𝑣 𝑥 𝑧 ) ) | 
						
							| 4 | 3 | abbidv | ⊢ ( 𝑢  =  𝑣  →  { 𝑧  ∣  𝑢 𝑥 𝑧 }  =  { 𝑧  ∣  𝑣 𝑥 𝑧 } ) | 
						
							| 5 | 2 4 | eqtrid | ⊢ ( 𝑢  =  𝑣  →  { 𝑤  ∣  𝑢 𝑥 𝑤 }  =  { 𝑧  ∣  𝑣 𝑥 𝑧 } ) | 
						
							| 6 | 5 | fveq2d | ⊢ ( 𝑢  =  𝑣  →  ( 𝑔 ‘ { 𝑤  ∣  𝑢 𝑥 𝑤 } )  =  ( 𝑔 ‘ { 𝑧  ∣  𝑣 𝑥 𝑧 } ) ) | 
						
							| 7 | 6 | cbvmptv | ⊢ ( 𝑢  ∈  V  ↦  ( 𝑔 ‘ { 𝑤  ∣  𝑢 𝑥 𝑤 } ) )  =  ( 𝑣  ∈  V  ↦  ( 𝑔 ‘ { 𝑧  ∣  𝑣 𝑥 𝑧 } ) ) | 
						
							| 8 |  | rdgeq1 | ⊢ ( ( 𝑢  ∈  V  ↦  ( 𝑔 ‘ { 𝑤  ∣  𝑢 𝑥 𝑤 } ) )  =  ( 𝑣  ∈  V  ↦  ( 𝑔 ‘ { 𝑧  ∣  𝑣 𝑥 𝑧 } ) )  →  rec ( ( 𝑢  ∈  V  ↦  ( 𝑔 ‘ { 𝑤  ∣  𝑢 𝑥 𝑤 } ) ) ,  𝑦 )  =  rec ( ( 𝑣  ∈  V  ↦  ( 𝑔 ‘ { 𝑧  ∣  𝑣 𝑥 𝑧 } ) ) ,  𝑦 ) ) | 
						
							| 9 | 7 8 | ax-mp | ⊢ rec ( ( 𝑢  ∈  V  ↦  ( 𝑔 ‘ { 𝑤  ∣  𝑢 𝑥 𝑤 } ) ) ,  𝑦 )  =  rec ( ( 𝑣  ∈  V  ↦  ( 𝑔 ‘ { 𝑧  ∣  𝑣 𝑥 𝑧 } ) ) ,  𝑦 ) | 
						
							| 10 | 9 | reseq1i | ⊢ ( rec ( ( 𝑢  ∈  V  ↦  ( 𝑔 ‘ { 𝑤  ∣  𝑢 𝑥 𝑤 } ) ) ,  𝑦 )  ↾  ω )  =  ( rec ( ( 𝑣  ∈  V  ↦  ( 𝑔 ‘ { 𝑧  ∣  𝑣 𝑥 𝑧 } ) ) ,  𝑦 )  ↾  ω ) | 
						
							| 11 | 10 | axdclem2 | ⊢ ( ∃ 𝑧 𝑦 𝑥 𝑧  →  ( ran  𝑥  ⊆  dom  𝑥  →  ∃ 𝑓 ∀ 𝑛  ∈  ω ( 𝑓 ‘ 𝑛 ) 𝑥 ( 𝑓 ‘ suc  𝑛 ) ) ) | 
						
							| 12 | 11 | exlimiv | ⊢ ( ∃ 𝑦 ∃ 𝑧 𝑦 𝑥 𝑧  →  ( ran  𝑥  ⊆  dom  𝑥  →  ∃ 𝑓 ∀ 𝑛  ∈  ω ( 𝑓 ‘ 𝑛 ) 𝑥 ( 𝑓 ‘ suc  𝑛 ) ) ) | 
						
							| 13 | 12 | imp | ⊢ ( ( ∃ 𝑦 ∃ 𝑧 𝑦 𝑥 𝑧  ∧  ran  𝑥  ⊆  dom  𝑥 )  →  ∃ 𝑓 ∀ 𝑛  ∈  ω ( 𝑓 ‘ 𝑛 ) 𝑥 ( 𝑓 ‘ suc  𝑛 ) ) |