Step |
Hyp |
Ref |
Expression |
1 |
|
axdc2lem.1 |
⊢ 𝐴 ∈ V |
2 |
|
axdc2lem.2 |
⊢ 𝑅 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝐹 ‘ 𝑥 ) ) } |
3 |
|
axdc2lem.3 |
⊢ 𝐺 = ( 𝑥 ∈ ω ↦ ( ℎ ‘ 𝑥 ) ) |
4 |
2
|
dmeqi |
⊢ dom 𝑅 = dom { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝐹 ‘ 𝑥 ) ) } |
5 |
|
19.42v |
⊢ ( ∃ 𝑦 ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝐹 ‘ 𝑥 ) ) ↔ ( 𝑥 ∈ 𝐴 ∧ ∃ 𝑦 𝑦 ∈ ( 𝐹 ‘ 𝑥 ) ) ) |
6 |
5
|
abbii |
⊢ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝐹 ‘ 𝑥 ) ) } = { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ ∃ 𝑦 𝑦 ∈ ( 𝐹 ‘ 𝑥 ) ) } |
7 |
|
dmopab |
⊢ dom { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝐹 ‘ 𝑥 ) ) } = { 𝑥 ∣ ∃ 𝑦 ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝐹 ‘ 𝑥 ) ) } |
8 |
|
df-rab |
⊢ { 𝑥 ∈ 𝐴 ∣ ∃ 𝑦 𝑦 ∈ ( 𝐹 ‘ 𝑥 ) } = { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ ∃ 𝑦 𝑦 ∈ ( 𝐹 ‘ 𝑥 ) ) } |
9 |
6 7 8
|
3eqtr4i |
⊢ dom { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝐹 ‘ 𝑥 ) ) } = { 𝑥 ∈ 𝐴 ∣ ∃ 𝑦 𝑦 ∈ ( 𝐹 ‘ 𝑥 ) } |
10 |
4 9
|
eqtri |
⊢ dom 𝑅 = { 𝑥 ∈ 𝐴 ∣ ∃ 𝑦 𝑦 ∈ ( 𝐹 ‘ 𝑥 ) } |
11 |
|
ffvelrn |
⊢ ( ( 𝐹 : 𝐴 ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) ∈ ( 𝒫 𝐴 ∖ { ∅ } ) ) |
12 |
|
eldifsni |
⊢ ( ( 𝐹 ‘ 𝑥 ) ∈ ( 𝒫 𝐴 ∖ { ∅ } ) → ( 𝐹 ‘ 𝑥 ) ≠ ∅ ) |
13 |
|
n0 |
⊢ ( ( 𝐹 ‘ 𝑥 ) ≠ ∅ ↔ ∃ 𝑦 𝑦 ∈ ( 𝐹 ‘ 𝑥 ) ) |
14 |
12 13
|
sylib |
⊢ ( ( 𝐹 ‘ 𝑥 ) ∈ ( 𝒫 𝐴 ∖ { ∅ } ) → ∃ 𝑦 𝑦 ∈ ( 𝐹 ‘ 𝑥 ) ) |
15 |
11 14
|
syl |
⊢ ( ( 𝐹 : 𝐴 ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) ∧ 𝑥 ∈ 𝐴 ) → ∃ 𝑦 𝑦 ∈ ( 𝐹 ‘ 𝑥 ) ) |
16 |
15
|
ralrimiva |
⊢ ( 𝐹 : 𝐴 ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) → ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 𝑦 ∈ ( 𝐹 ‘ 𝑥 ) ) |
17 |
|
rabid2 |
⊢ ( 𝐴 = { 𝑥 ∈ 𝐴 ∣ ∃ 𝑦 𝑦 ∈ ( 𝐹 ‘ 𝑥 ) } ↔ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 𝑦 ∈ ( 𝐹 ‘ 𝑥 ) ) |
18 |
16 17
|
sylibr |
⊢ ( 𝐹 : 𝐴 ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) → 𝐴 = { 𝑥 ∈ 𝐴 ∣ ∃ 𝑦 𝑦 ∈ ( 𝐹 ‘ 𝑥 ) } ) |
19 |
10 18
|
eqtr4id |
⊢ ( 𝐹 : 𝐴 ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) → dom 𝑅 = 𝐴 ) |
20 |
19
|
neeq1d |
⊢ ( 𝐹 : 𝐴 ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) → ( dom 𝑅 ≠ ∅ ↔ 𝐴 ≠ ∅ ) ) |
21 |
20
|
biimparc |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐹 : 𝐴 ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) ) → dom 𝑅 ≠ ∅ ) |
22 |
|
eldifi |
⊢ ( ( 𝐹 ‘ 𝑥 ) ∈ ( 𝒫 𝐴 ∖ { ∅ } ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝒫 𝐴 ) |
23 |
|
elelpwi |
⊢ ( ( 𝑦 ∈ ( 𝐹 ‘ 𝑥 ) ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝒫 𝐴 ) → 𝑦 ∈ 𝐴 ) |
24 |
23
|
expcom |
⊢ ( ( 𝐹 ‘ 𝑥 ) ∈ 𝒫 𝐴 → ( 𝑦 ∈ ( 𝐹 ‘ 𝑥 ) → 𝑦 ∈ 𝐴 ) ) |
25 |
11 22 24
|
3syl |
⊢ ( ( 𝐹 : 𝐴 ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑦 ∈ ( 𝐹 ‘ 𝑥 ) → 𝑦 ∈ 𝐴 ) ) |
26 |
25
|
expimpd |
⊢ ( 𝐹 : 𝐴 ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝐹 ‘ 𝑥 ) ) → 𝑦 ∈ 𝐴 ) ) |
27 |
26
|
exlimdv |
⊢ ( 𝐹 : 𝐴 ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) → ( ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝐹 ‘ 𝑥 ) ) → 𝑦 ∈ 𝐴 ) ) |
28 |
27
|
alrimiv |
⊢ ( 𝐹 : 𝐴 ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) → ∀ 𝑦 ( ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝐹 ‘ 𝑥 ) ) → 𝑦 ∈ 𝐴 ) ) |
29 |
2
|
rneqi |
⊢ ran 𝑅 = ran { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝐹 ‘ 𝑥 ) ) } |
30 |
|
rnopab |
⊢ ran { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝐹 ‘ 𝑥 ) ) } = { 𝑦 ∣ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝐹 ‘ 𝑥 ) ) } |
31 |
29 30
|
eqtri |
⊢ ran 𝑅 = { 𝑦 ∣ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝐹 ‘ 𝑥 ) ) } |
32 |
31
|
sseq1i |
⊢ ( ran 𝑅 ⊆ 𝐴 ↔ { 𝑦 ∣ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝐹 ‘ 𝑥 ) ) } ⊆ 𝐴 ) |
33 |
|
abss |
⊢ ( { 𝑦 ∣ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝐹 ‘ 𝑥 ) ) } ⊆ 𝐴 ↔ ∀ 𝑦 ( ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝐹 ‘ 𝑥 ) ) → 𝑦 ∈ 𝐴 ) ) |
34 |
32 33
|
bitri |
⊢ ( ran 𝑅 ⊆ 𝐴 ↔ ∀ 𝑦 ( ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝐹 ‘ 𝑥 ) ) → 𝑦 ∈ 𝐴 ) ) |
35 |
28 34
|
sylibr |
⊢ ( 𝐹 : 𝐴 ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) → ran 𝑅 ⊆ 𝐴 ) |
36 |
35 19
|
sseqtrrd |
⊢ ( 𝐹 : 𝐴 ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) → ran 𝑅 ⊆ dom 𝑅 ) |
37 |
36
|
adantl |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐹 : 𝐴 ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) ) → ran 𝑅 ⊆ dom 𝑅 ) |
38 |
|
fvrn0 |
⊢ ( 𝐹 ‘ 𝑥 ) ∈ ( ran 𝐹 ∪ { ∅ } ) |
39 |
|
elssuni |
⊢ ( ( 𝐹 ‘ 𝑥 ) ∈ ( ran 𝐹 ∪ { ∅ } ) → ( 𝐹 ‘ 𝑥 ) ⊆ ∪ ( ran 𝐹 ∪ { ∅ } ) ) |
40 |
38 39
|
ax-mp |
⊢ ( 𝐹 ‘ 𝑥 ) ⊆ ∪ ( ran 𝐹 ∪ { ∅ } ) |
41 |
40
|
sseli |
⊢ ( 𝑦 ∈ ( 𝐹 ‘ 𝑥 ) → 𝑦 ∈ ∪ ( ran 𝐹 ∪ { ∅ } ) ) |
42 |
41
|
anim2i |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝐹 ‘ 𝑥 ) ) → ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ∪ ( ran 𝐹 ∪ { ∅ } ) ) ) |
43 |
42
|
ssopab2i |
⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝐹 ‘ 𝑥 ) ) } ⊆ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ∪ ( ran 𝐹 ∪ { ∅ } ) ) } |
44 |
|
df-xp |
⊢ ( 𝐴 × ∪ ( ran 𝐹 ∪ { ∅ } ) ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ∪ ( ran 𝐹 ∪ { ∅ } ) ) } |
45 |
43 2 44
|
3sstr4i |
⊢ 𝑅 ⊆ ( 𝐴 × ∪ ( ran 𝐹 ∪ { ∅ } ) ) |
46 |
|
frn |
⊢ ( 𝐹 : 𝐴 ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) → ran 𝐹 ⊆ ( 𝒫 𝐴 ∖ { ∅ } ) ) |
47 |
46
|
adantl |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐹 : 𝐴 ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) ) → ran 𝐹 ⊆ ( 𝒫 𝐴 ∖ { ∅ } ) ) |
48 |
1
|
pwex |
⊢ 𝒫 𝐴 ∈ V |
49 |
48
|
difexi |
⊢ ( 𝒫 𝐴 ∖ { ∅ } ) ∈ V |
50 |
49
|
ssex |
⊢ ( ran 𝐹 ⊆ ( 𝒫 𝐴 ∖ { ∅ } ) → ran 𝐹 ∈ V ) |
51 |
47 50
|
syl |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐹 : 𝐴 ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) ) → ran 𝐹 ∈ V ) |
52 |
|
p0ex |
⊢ { ∅ } ∈ V |
53 |
|
unexg |
⊢ ( ( ran 𝐹 ∈ V ∧ { ∅ } ∈ V ) → ( ran 𝐹 ∪ { ∅ } ) ∈ V ) |
54 |
51 52 53
|
sylancl |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐹 : 𝐴 ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) ) → ( ran 𝐹 ∪ { ∅ } ) ∈ V ) |
55 |
54
|
uniexd |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐹 : 𝐴 ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) ) → ∪ ( ran 𝐹 ∪ { ∅ } ) ∈ V ) |
56 |
|
xpexg |
⊢ ( ( 𝐴 ∈ V ∧ ∪ ( ran 𝐹 ∪ { ∅ } ) ∈ V ) → ( 𝐴 × ∪ ( ran 𝐹 ∪ { ∅ } ) ) ∈ V ) |
57 |
1 55 56
|
sylancr |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐹 : 𝐴 ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) ) → ( 𝐴 × ∪ ( ran 𝐹 ∪ { ∅ } ) ) ∈ V ) |
58 |
|
ssexg |
⊢ ( ( 𝑅 ⊆ ( 𝐴 × ∪ ( ran 𝐹 ∪ { ∅ } ) ) ∧ ( 𝐴 × ∪ ( ran 𝐹 ∪ { ∅ } ) ) ∈ V ) → 𝑅 ∈ V ) |
59 |
45 57 58
|
sylancr |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐹 : 𝐴 ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) ) → 𝑅 ∈ V ) |
60 |
|
n0 |
⊢ ( dom 𝑟 ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ dom 𝑟 ) |
61 |
|
vex |
⊢ 𝑥 ∈ V |
62 |
61
|
eldm |
⊢ ( 𝑥 ∈ dom 𝑟 ↔ ∃ 𝑦 𝑥 𝑟 𝑦 ) |
63 |
62
|
exbii |
⊢ ( ∃ 𝑥 𝑥 ∈ dom 𝑟 ↔ ∃ 𝑥 ∃ 𝑦 𝑥 𝑟 𝑦 ) |
64 |
60 63
|
bitr2i |
⊢ ( ∃ 𝑥 ∃ 𝑦 𝑥 𝑟 𝑦 ↔ dom 𝑟 ≠ ∅ ) |
65 |
|
dmeq |
⊢ ( 𝑟 = 𝑅 → dom 𝑟 = dom 𝑅 ) |
66 |
65
|
neeq1d |
⊢ ( 𝑟 = 𝑅 → ( dom 𝑟 ≠ ∅ ↔ dom 𝑅 ≠ ∅ ) ) |
67 |
64 66
|
syl5bb |
⊢ ( 𝑟 = 𝑅 → ( ∃ 𝑥 ∃ 𝑦 𝑥 𝑟 𝑦 ↔ dom 𝑅 ≠ ∅ ) ) |
68 |
|
rneq |
⊢ ( 𝑟 = 𝑅 → ran 𝑟 = ran 𝑅 ) |
69 |
68 65
|
sseq12d |
⊢ ( 𝑟 = 𝑅 → ( ran 𝑟 ⊆ dom 𝑟 ↔ ran 𝑅 ⊆ dom 𝑅 ) ) |
70 |
67 69
|
anbi12d |
⊢ ( 𝑟 = 𝑅 → ( ( ∃ 𝑥 ∃ 𝑦 𝑥 𝑟 𝑦 ∧ ran 𝑟 ⊆ dom 𝑟 ) ↔ ( dom 𝑅 ≠ ∅ ∧ ran 𝑅 ⊆ dom 𝑅 ) ) ) |
71 |
|
breq |
⊢ ( 𝑟 = 𝑅 → ( ( ℎ ‘ 𝑘 ) 𝑟 ( ℎ ‘ suc 𝑘 ) ↔ ( ℎ ‘ 𝑘 ) 𝑅 ( ℎ ‘ suc 𝑘 ) ) ) |
72 |
71
|
ralbidv |
⊢ ( 𝑟 = 𝑅 → ( ∀ 𝑘 ∈ ω ( ℎ ‘ 𝑘 ) 𝑟 ( ℎ ‘ suc 𝑘 ) ↔ ∀ 𝑘 ∈ ω ( ℎ ‘ 𝑘 ) 𝑅 ( ℎ ‘ suc 𝑘 ) ) ) |
73 |
72
|
exbidv |
⊢ ( 𝑟 = 𝑅 → ( ∃ ℎ ∀ 𝑘 ∈ ω ( ℎ ‘ 𝑘 ) 𝑟 ( ℎ ‘ suc 𝑘 ) ↔ ∃ ℎ ∀ 𝑘 ∈ ω ( ℎ ‘ 𝑘 ) 𝑅 ( ℎ ‘ suc 𝑘 ) ) ) |
74 |
70 73
|
imbi12d |
⊢ ( 𝑟 = 𝑅 → ( ( ( ∃ 𝑥 ∃ 𝑦 𝑥 𝑟 𝑦 ∧ ran 𝑟 ⊆ dom 𝑟 ) → ∃ ℎ ∀ 𝑘 ∈ ω ( ℎ ‘ 𝑘 ) 𝑟 ( ℎ ‘ suc 𝑘 ) ) ↔ ( ( dom 𝑅 ≠ ∅ ∧ ran 𝑅 ⊆ dom 𝑅 ) → ∃ ℎ ∀ 𝑘 ∈ ω ( ℎ ‘ 𝑘 ) 𝑅 ( ℎ ‘ suc 𝑘 ) ) ) ) |
75 |
|
ax-dc |
⊢ ( ( ∃ 𝑥 ∃ 𝑦 𝑥 𝑟 𝑦 ∧ ran 𝑟 ⊆ dom 𝑟 ) → ∃ ℎ ∀ 𝑘 ∈ ω ( ℎ ‘ 𝑘 ) 𝑟 ( ℎ ‘ suc 𝑘 ) ) |
76 |
74 75
|
vtoclg |
⊢ ( 𝑅 ∈ V → ( ( dom 𝑅 ≠ ∅ ∧ ran 𝑅 ⊆ dom 𝑅 ) → ∃ ℎ ∀ 𝑘 ∈ ω ( ℎ ‘ 𝑘 ) 𝑅 ( ℎ ‘ suc 𝑘 ) ) ) |
77 |
59 76
|
syl |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐹 : 𝐴 ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) ) → ( ( dom 𝑅 ≠ ∅ ∧ ran 𝑅 ⊆ dom 𝑅 ) → ∃ ℎ ∀ 𝑘 ∈ ω ( ℎ ‘ 𝑘 ) 𝑅 ( ℎ ‘ suc 𝑘 ) ) ) |
78 |
21 37 77
|
mp2and |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐹 : 𝐴 ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) ) → ∃ ℎ ∀ 𝑘 ∈ ω ( ℎ ‘ 𝑘 ) 𝑅 ( ℎ ‘ suc 𝑘 ) ) |
79 |
|
simpr |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐹 : 𝐴 ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) ) → 𝐹 : 𝐴 ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) ) |
80 |
|
fveq2 |
⊢ ( 𝑘 = 𝑥 → ( ℎ ‘ 𝑘 ) = ( ℎ ‘ 𝑥 ) ) |
81 |
|
suceq |
⊢ ( 𝑘 = 𝑥 → suc 𝑘 = suc 𝑥 ) |
82 |
81
|
fveq2d |
⊢ ( 𝑘 = 𝑥 → ( ℎ ‘ suc 𝑘 ) = ( ℎ ‘ suc 𝑥 ) ) |
83 |
80 82
|
breq12d |
⊢ ( 𝑘 = 𝑥 → ( ( ℎ ‘ 𝑘 ) 𝑅 ( ℎ ‘ suc 𝑘 ) ↔ ( ℎ ‘ 𝑥 ) 𝑅 ( ℎ ‘ suc 𝑥 ) ) ) |
84 |
83
|
rspccv |
⊢ ( ∀ 𝑘 ∈ ω ( ℎ ‘ 𝑘 ) 𝑅 ( ℎ ‘ suc 𝑘 ) → ( 𝑥 ∈ ω → ( ℎ ‘ 𝑥 ) 𝑅 ( ℎ ‘ suc 𝑥 ) ) ) |
85 |
|
fvex |
⊢ ( ℎ ‘ 𝑥 ) ∈ V |
86 |
|
fvex |
⊢ ( ℎ ‘ suc 𝑥 ) ∈ V |
87 |
85 86
|
breldm |
⊢ ( ( ℎ ‘ 𝑥 ) 𝑅 ( ℎ ‘ suc 𝑥 ) → ( ℎ ‘ 𝑥 ) ∈ dom 𝑅 ) |
88 |
84 87
|
syl6 |
⊢ ( ∀ 𝑘 ∈ ω ( ℎ ‘ 𝑘 ) 𝑅 ( ℎ ‘ suc 𝑘 ) → ( 𝑥 ∈ ω → ( ℎ ‘ 𝑥 ) ∈ dom 𝑅 ) ) |
89 |
88
|
imp |
⊢ ( ( ∀ 𝑘 ∈ ω ( ℎ ‘ 𝑘 ) 𝑅 ( ℎ ‘ suc 𝑘 ) ∧ 𝑥 ∈ ω ) → ( ℎ ‘ 𝑥 ) ∈ dom 𝑅 ) |
90 |
89
|
adantll |
⊢ ( ( ( dom 𝑅 = 𝐴 ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ 𝑘 ) 𝑅 ( ℎ ‘ suc 𝑘 ) ) ∧ 𝑥 ∈ ω ) → ( ℎ ‘ 𝑥 ) ∈ dom 𝑅 ) |
91 |
|
eleq2 |
⊢ ( dom 𝑅 = 𝐴 → ( ( ℎ ‘ 𝑥 ) ∈ dom 𝑅 ↔ ( ℎ ‘ 𝑥 ) ∈ 𝐴 ) ) |
92 |
91
|
ad2antrr |
⊢ ( ( ( dom 𝑅 = 𝐴 ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ 𝑘 ) 𝑅 ( ℎ ‘ suc 𝑘 ) ) ∧ 𝑥 ∈ ω ) → ( ( ℎ ‘ 𝑥 ) ∈ dom 𝑅 ↔ ( ℎ ‘ 𝑥 ) ∈ 𝐴 ) ) |
93 |
90 92
|
mpbid |
⊢ ( ( ( dom 𝑅 = 𝐴 ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ 𝑘 ) 𝑅 ( ℎ ‘ suc 𝑘 ) ) ∧ 𝑥 ∈ ω ) → ( ℎ ‘ 𝑥 ) ∈ 𝐴 ) |
94 |
93 3
|
fmptd |
⊢ ( ( dom 𝑅 = 𝐴 ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ 𝑘 ) 𝑅 ( ℎ ‘ suc 𝑘 ) ) → 𝐺 : ω ⟶ 𝐴 ) |
95 |
94
|
ex |
⊢ ( dom 𝑅 = 𝐴 → ( ∀ 𝑘 ∈ ω ( ℎ ‘ 𝑘 ) 𝑅 ( ℎ ‘ suc 𝑘 ) → 𝐺 : ω ⟶ 𝐴 ) ) |
96 |
19 95
|
syl |
⊢ ( 𝐹 : 𝐴 ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) → ( ∀ 𝑘 ∈ ω ( ℎ ‘ 𝑘 ) 𝑅 ( ℎ ‘ suc 𝑘 ) → 𝐺 : ω ⟶ 𝐴 ) ) |
97 |
96
|
impcom |
⊢ ( ( ∀ 𝑘 ∈ ω ( ℎ ‘ 𝑘 ) 𝑅 ( ℎ ‘ suc 𝑘 ) ∧ 𝐹 : 𝐴 ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) ) → 𝐺 : ω ⟶ 𝐴 ) |
98 |
|
fveq2 |
⊢ ( 𝑥 = 𝑘 → ( ℎ ‘ 𝑥 ) = ( ℎ ‘ 𝑘 ) ) |
99 |
|
fvex |
⊢ ( ℎ ‘ 𝑘 ) ∈ V |
100 |
98 3 99
|
fvmpt |
⊢ ( 𝑘 ∈ ω → ( 𝐺 ‘ 𝑘 ) = ( ℎ ‘ 𝑘 ) ) |
101 |
|
peano2 |
⊢ ( 𝑘 ∈ ω → suc 𝑘 ∈ ω ) |
102 |
|
fvex |
⊢ ( ℎ ‘ suc 𝑘 ) ∈ V |
103 |
|
fveq2 |
⊢ ( 𝑥 = suc 𝑘 → ( ℎ ‘ 𝑥 ) = ( ℎ ‘ suc 𝑘 ) ) |
104 |
103 3
|
fvmptg |
⊢ ( ( suc 𝑘 ∈ ω ∧ ( ℎ ‘ suc 𝑘 ) ∈ V ) → ( 𝐺 ‘ suc 𝑘 ) = ( ℎ ‘ suc 𝑘 ) ) |
105 |
101 102 104
|
sylancl |
⊢ ( 𝑘 ∈ ω → ( 𝐺 ‘ suc 𝑘 ) = ( ℎ ‘ suc 𝑘 ) ) |
106 |
100 105
|
breq12d |
⊢ ( 𝑘 ∈ ω → ( ( 𝐺 ‘ 𝑘 ) 𝑅 ( 𝐺 ‘ suc 𝑘 ) ↔ ( ℎ ‘ 𝑘 ) 𝑅 ( ℎ ‘ suc 𝑘 ) ) ) |
107 |
|
fvex |
⊢ ( 𝐺 ‘ 𝑘 ) ∈ V |
108 |
|
fvex |
⊢ ( 𝐺 ‘ suc 𝑘 ) ∈ V |
109 |
|
eleq1 |
⊢ ( 𝑥 = ( 𝐺 ‘ 𝑘 ) → ( 𝑥 ∈ 𝐴 ↔ ( 𝐺 ‘ 𝑘 ) ∈ 𝐴 ) ) |
110 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝐺 ‘ 𝑘 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) |
111 |
110
|
eleq2d |
⊢ ( 𝑥 = ( 𝐺 ‘ 𝑘 ) → ( 𝑦 ∈ ( 𝐹 ‘ 𝑥 ) ↔ 𝑦 ∈ ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) ) |
112 |
109 111
|
anbi12d |
⊢ ( 𝑥 = ( 𝐺 ‘ 𝑘 ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝐹 ‘ 𝑥 ) ) ↔ ( ( 𝐺 ‘ 𝑘 ) ∈ 𝐴 ∧ 𝑦 ∈ ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) ) ) |
113 |
|
eleq1 |
⊢ ( 𝑦 = ( 𝐺 ‘ suc 𝑘 ) → ( 𝑦 ∈ ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ↔ ( 𝐺 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) ) |
114 |
113
|
anbi2d |
⊢ ( 𝑦 = ( 𝐺 ‘ suc 𝑘 ) → ( ( ( 𝐺 ‘ 𝑘 ) ∈ 𝐴 ∧ 𝑦 ∈ ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) ↔ ( ( 𝐺 ‘ 𝑘 ) ∈ 𝐴 ∧ ( 𝐺 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) ) ) |
115 |
107 108 112 114 2
|
brab |
⊢ ( ( 𝐺 ‘ 𝑘 ) 𝑅 ( 𝐺 ‘ suc 𝑘 ) ↔ ( ( 𝐺 ‘ 𝑘 ) ∈ 𝐴 ∧ ( 𝐺 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) ) |
116 |
115
|
simprbi |
⊢ ( ( 𝐺 ‘ 𝑘 ) 𝑅 ( 𝐺 ‘ suc 𝑘 ) → ( 𝐺 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) |
117 |
106 116
|
syl6bir |
⊢ ( 𝑘 ∈ ω → ( ( ℎ ‘ 𝑘 ) 𝑅 ( ℎ ‘ suc 𝑘 ) → ( 𝐺 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) ) |
118 |
117
|
ralimia |
⊢ ( ∀ 𝑘 ∈ ω ( ℎ ‘ 𝑘 ) 𝑅 ( ℎ ‘ suc 𝑘 ) → ∀ 𝑘 ∈ ω ( 𝐺 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) |
119 |
118
|
adantr |
⊢ ( ( ∀ 𝑘 ∈ ω ( ℎ ‘ 𝑘 ) 𝑅 ( ℎ ‘ suc 𝑘 ) ∧ 𝐹 : 𝐴 ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) ) → ∀ 𝑘 ∈ ω ( 𝐺 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) |
120 |
|
fvrn0 |
⊢ ( ℎ ‘ 𝑥 ) ∈ ( ran ℎ ∪ { ∅ } ) |
121 |
120
|
rgenw |
⊢ ∀ 𝑥 ∈ ω ( ℎ ‘ 𝑥 ) ∈ ( ran ℎ ∪ { ∅ } ) |
122 |
|
eqid |
⊢ ( 𝑥 ∈ ω ↦ ( ℎ ‘ 𝑥 ) ) = ( 𝑥 ∈ ω ↦ ( ℎ ‘ 𝑥 ) ) |
123 |
122
|
fmpt |
⊢ ( ∀ 𝑥 ∈ ω ( ℎ ‘ 𝑥 ) ∈ ( ran ℎ ∪ { ∅ } ) ↔ ( 𝑥 ∈ ω ↦ ( ℎ ‘ 𝑥 ) ) : ω ⟶ ( ran ℎ ∪ { ∅ } ) ) |
124 |
121 123
|
mpbi |
⊢ ( 𝑥 ∈ ω ↦ ( ℎ ‘ 𝑥 ) ) : ω ⟶ ( ran ℎ ∪ { ∅ } ) |
125 |
|
dcomex |
⊢ ω ∈ V |
126 |
|
vex |
⊢ ℎ ∈ V |
127 |
126
|
rnex |
⊢ ran ℎ ∈ V |
128 |
127 52
|
unex |
⊢ ( ran ℎ ∪ { ∅ } ) ∈ V |
129 |
|
fex2 |
⊢ ( ( ( 𝑥 ∈ ω ↦ ( ℎ ‘ 𝑥 ) ) : ω ⟶ ( ran ℎ ∪ { ∅ } ) ∧ ω ∈ V ∧ ( ran ℎ ∪ { ∅ } ) ∈ V ) → ( 𝑥 ∈ ω ↦ ( ℎ ‘ 𝑥 ) ) ∈ V ) |
130 |
124 125 128 129
|
mp3an |
⊢ ( 𝑥 ∈ ω ↦ ( ℎ ‘ 𝑥 ) ) ∈ V |
131 |
3 130
|
eqeltri |
⊢ 𝐺 ∈ V |
132 |
|
feq1 |
⊢ ( 𝑔 = 𝐺 → ( 𝑔 : ω ⟶ 𝐴 ↔ 𝐺 : ω ⟶ 𝐴 ) ) |
133 |
|
fveq1 |
⊢ ( 𝑔 = 𝐺 → ( 𝑔 ‘ suc 𝑘 ) = ( 𝐺 ‘ suc 𝑘 ) ) |
134 |
|
fveq1 |
⊢ ( 𝑔 = 𝐺 → ( 𝑔 ‘ 𝑘 ) = ( 𝐺 ‘ 𝑘 ) ) |
135 |
134
|
fveq2d |
⊢ ( 𝑔 = 𝐺 → ( 𝐹 ‘ ( 𝑔 ‘ 𝑘 ) ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) |
136 |
133 135
|
eleq12d |
⊢ ( 𝑔 = 𝐺 → ( ( 𝑔 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑔 ‘ 𝑘 ) ) ↔ ( 𝐺 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) ) |
137 |
136
|
ralbidv |
⊢ ( 𝑔 = 𝐺 → ( ∀ 𝑘 ∈ ω ( 𝑔 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑔 ‘ 𝑘 ) ) ↔ ∀ 𝑘 ∈ ω ( 𝐺 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) ) |
138 |
132 137
|
anbi12d |
⊢ ( 𝑔 = 𝐺 → ( ( 𝑔 : ω ⟶ 𝐴 ∧ ∀ 𝑘 ∈ ω ( 𝑔 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑔 ‘ 𝑘 ) ) ) ↔ ( 𝐺 : ω ⟶ 𝐴 ∧ ∀ 𝑘 ∈ ω ( 𝐺 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) ) ) |
139 |
131 138
|
spcev |
⊢ ( ( 𝐺 : ω ⟶ 𝐴 ∧ ∀ 𝑘 ∈ ω ( 𝐺 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) → ∃ 𝑔 ( 𝑔 : ω ⟶ 𝐴 ∧ ∀ 𝑘 ∈ ω ( 𝑔 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑔 ‘ 𝑘 ) ) ) ) |
140 |
97 119 139
|
syl2anc |
⊢ ( ( ∀ 𝑘 ∈ ω ( ℎ ‘ 𝑘 ) 𝑅 ( ℎ ‘ suc 𝑘 ) ∧ 𝐹 : 𝐴 ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) ) → ∃ 𝑔 ( 𝑔 : ω ⟶ 𝐴 ∧ ∀ 𝑘 ∈ ω ( 𝑔 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑔 ‘ 𝑘 ) ) ) ) |
141 |
140
|
ex |
⊢ ( ∀ 𝑘 ∈ ω ( ℎ ‘ 𝑘 ) 𝑅 ( ℎ ‘ suc 𝑘 ) → ( 𝐹 : 𝐴 ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) → ∃ 𝑔 ( 𝑔 : ω ⟶ 𝐴 ∧ ∀ 𝑘 ∈ ω ( 𝑔 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑔 ‘ 𝑘 ) ) ) ) ) |
142 |
141
|
exlimiv |
⊢ ( ∃ ℎ ∀ 𝑘 ∈ ω ( ℎ ‘ 𝑘 ) 𝑅 ( ℎ ‘ suc 𝑘 ) → ( 𝐹 : 𝐴 ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) → ∃ 𝑔 ( 𝑔 : ω ⟶ 𝐴 ∧ ∀ 𝑘 ∈ ω ( 𝑔 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑔 ‘ 𝑘 ) ) ) ) ) |
143 |
78 79 142
|
sylc |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐹 : 𝐴 ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) ) → ∃ 𝑔 ( 𝑔 : ω ⟶ 𝐴 ∧ ∀ 𝑘 ∈ ω ( 𝑔 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑔 ‘ 𝑘 ) ) ) ) |