Step |
Hyp |
Ref |
Expression |
1 |
|
axdc3.1 |
⊢ 𝐴 ∈ V |
2 |
|
feq1 |
⊢ ( 𝑡 = 𝑠 → ( 𝑡 : suc 𝑛 ⟶ 𝐴 ↔ 𝑠 : suc 𝑛 ⟶ 𝐴 ) ) |
3 |
|
fveq1 |
⊢ ( 𝑡 = 𝑠 → ( 𝑡 ‘ ∅ ) = ( 𝑠 ‘ ∅ ) ) |
4 |
3
|
eqeq1d |
⊢ ( 𝑡 = 𝑠 → ( ( 𝑡 ‘ ∅ ) = 𝐶 ↔ ( 𝑠 ‘ ∅ ) = 𝐶 ) ) |
5 |
|
fveq1 |
⊢ ( 𝑡 = 𝑠 → ( 𝑡 ‘ suc 𝑗 ) = ( 𝑠 ‘ suc 𝑗 ) ) |
6 |
|
fveq1 |
⊢ ( 𝑡 = 𝑠 → ( 𝑡 ‘ 𝑗 ) = ( 𝑠 ‘ 𝑗 ) ) |
7 |
6
|
fveq2d |
⊢ ( 𝑡 = 𝑠 → ( 𝐹 ‘ ( 𝑡 ‘ 𝑗 ) ) = ( 𝐹 ‘ ( 𝑠 ‘ 𝑗 ) ) ) |
8 |
5 7
|
eleq12d |
⊢ ( 𝑡 = 𝑠 → ( ( 𝑡 ‘ suc 𝑗 ) ∈ ( 𝐹 ‘ ( 𝑡 ‘ 𝑗 ) ) ↔ ( 𝑠 ‘ suc 𝑗 ) ∈ ( 𝐹 ‘ ( 𝑠 ‘ 𝑗 ) ) ) ) |
9 |
8
|
ralbidv |
⊢ ( 𝑡 = 𝑠 → ( ∀ 𝑗 ∈ 𝑛 ( 𝑡 ‘ suc 𝑗 ) ∈ ( 𝐹 ‘ ( 𝑡 ‘ 𝑗 ) ) ↔ ∀ 𝑗 ∈ 𝑛 ( 𝑠 ‘ suc 𝑗 ) ∈ ( 𝐹 ‘ ( 𝑠 ‘ 𝑗 ) ) ) ) |
10 |
|
suceq |
⊢ ( 𝑗 = 𝑘 → suc 𝑗 = suc 𝑘 ) |
11 |
10
|
fveq2d |
⊢ ( 𝑗 = 𝑘 → ( 𝑠 ‘ suc 𝑗 ) = ( 𝑠 ‘ suc 𝑘 ) ) |
12 |
|
2fveq3 |
⊢ ( 𝑗 = 𝑘 → ( 𝐹 ‘ ( 𝑠 ‘ 𝑗 ) ) = ( 𝐹 ‘ ( 𝑠 ‘ 𝑘 ) ) ) |
13 |
11 12
|
eleq12d |
⊢ ( 𝑗 = 𝑘 → ( ( 𝑠 ‘ suc 𝑗 ) ∈ ( 𝐹 ‘ ( 𝑠 ‘ 𝑗 ) ) ↔ ( 𝑠 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑠 ‘ 𝑘 ) ) ) ) |
14 |
13
|
cbvralvw |
⊢ ( ∀ 𝑗 ∈ 𝑛 ( 𝑠 ‘ suc 𝑗 ) ∈ ( 𝐹 ‘ ( 𝑠 ‘ 𝑗 ) ) ↔ ∀ 𝑘 ∈ 𝑛 ( 𝑠 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑠 ‘ 𝑘 ) ) ) |
15 |
9 14
|
bitrdi |
⊢ ( 𝑡 = 𝑠 → ( ∀ 𝑗 ∈ 𝑛 ( 𝑡 ‘ suc 𝑗 ) ∈ ( 𝐹 ‘ ( 𝑡 ‘ 𝑗 ) ) ↔ ∀ 𝑘 ∈ 𝑛 ( 𝑠 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑠 ‘ 𝑘 ) ) ) ) |
16 |
2 4 15
|
3anbi123d |
⊢ ( 𝑡 = 𝑠 → ( ( 𝑡 : suc 𝑛 ⟶ 𝐴 ∧ ( 𝑡 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑗 ∈ 𝑛 ( 𝑡 ‘ suc 𝑗 ) ∈ ( 𝐹 ‘ ( 𝑡 ‘ 𝑗 ) ) ) ↔ ( 𝑠 : suc 𝑛 ⟶ 𝐴 ∧ ( 𝑠 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘 ∈ 𝑛 ( 𝑠 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑠 ‘ 𝑘 ) ) ) ) ) |
17 |
16
|
rexbidv |
⊢ ( 𝑡 = 𝑠 → ( ∃ 𝑛 ∈ ω ( 𝑡 : suc 𝑛 ⟶ 𝐴 ∧ ( 𝑡 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑗 ∈ 𝑛 ( 𝑡 ‘ suc 𝑗 ) ∈ ( 𝐹 ‘ ( 𝑡 ‘ 𝑗 ) ) ) ↔ ∃ 𝑛 ∈ ω ( 𝑠 : suc 𝑛 ⟶ 𝐴 ∧ ( 𝑠 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘 ∈ 𝑛 ( 𝑠 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑠 ‘ 𝑘 ) ) ) ) ) |
18 |
17
|
cbvabv |
⊢ { 𝑡 ∣ ∃ 𝑛 ∈ ω ( 𝑡 : suc 𝑛 ⟶ 𝐴 ∧ ( 𝑡 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑗 ∈ 𝑛 ( 𝑡 ‘ suc 𝑗 ) ∈ ( 𝐹 ‘ ( 𝑡 ‘ 𝑗 ) ) ) } = { 𝑠 ∣ ∃ 𝑛 ∈ ω ( 𝑠 : suc 𝑛 ⟶ 𝐴 ∧ ( 𝑠 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘 ∈ 𝑛 ( 𝑠 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑠 ‘ 𝑘 ) ) ) } |
19 |
|
eqid |
⊢ ( 𝑥 ∈ { 𝑡 ∣ ∃ 𝑛 ∈ ω ( 𝑡 : suc 𝑛 ⟶ 𝐴 ∧ ( 𝑡 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑗 ∈ 𝑛 ( 𝑡 ‘ suc 𝑗 ) ∈ ( 𝐹 ‘ ( 𝑡 ‘ 𝑗 ) ) ) } ↦ { 𝑦 ∈ { 𝑡 ∣ ∃ 𝑛 ∈ ω ( 𝑡 : suc 𝑛 ⟶ 𝐴 ∧ ( 𝑡 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑗 ∈ 𝑛 ( 𝑡 ‘ suc 𝑗 ) ∈ ( 𝐹 ‘ ( 𝑡 ‘ 𝑗 ) ) ) } ∣ ( dom 𝑦 = suc dom 𝑥 ∧ ( 𝑦 ↾ dom 𝑥 ) = 𝑥 ) } ) = ( 𝑥 ∈ { 𝑡 ∣ ∃ 𝑛 ∈ ω ( 𝑡 : suc 𝑛 ⟶ 𝐴 ∧ ( 𝑡 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑗 ∈ 𝑛 ( 𝑡 ‘ suc 𝑗 ) ∈ ( 𝐹 ‘ ( 𝑡 ‘ 𝑗 ) ) ) } ↦ { 𝑦 ∈ { 𝑡 ∣ ∃ 𝑛 ∈ ω ( 𝑡 : suc 𝑛 ⟶ 𝐴 ∧ ( 𝑡 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑗 ∈ 𝑛 ( 𝑡 ‘ suc 𝑗 ) ∈ ( 𝐹 ‘ ( 𝑡 ‘ 𝑗 ) ) ) } ∣ ( dom 𝑦 = suc dom 𝑥 ∧ ( 𝑦 ↾ dom 𝑥 ) = 𝑥 ) } ) |
20 |
1 18 19
|
axdc3lem4 |
⊢ ( ( 𝐶 ∈ 𝐴 ∧ 𝐹 : 𝐴 ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) ) → ∃ 𝑔 ( 𝑔 : ω ⟶ 𝐴 ∧ ( 𝑔 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘 ∈ ω ( 𝑔 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑔 ‘ 𝑘 ) ) ) ) |