Step |
Hyp |
Ref |
Expression |
1 |
|
axdc3lem.1 |
⊢ 𝐴 ∈ V |
2 |
|
axdc3lem.2 |
⊢ 𝑆 = { 𝑠 ∣ ∃ 𝑛 ∈ ω ( 𝑠 : suc 𝑛 ⟶ 𝐴 ∧ ( 𝑠 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘 ∈ 𝑛 ( 𝑠 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑠 ‘ 𝑘 ) ) ) } |
3 |
|
dcomex |
⊢ ω ∈ V |
4 |
3 1
|
xpex |
⊢ ( ω × 𝐴 ) ∈ V |
5 |
4
|
pwex |
⊢ 𝒫 ( ω × 𝐴 ) ∈ V |
6 |
|
fssxp |
⊢ ( 𝑠 : suc 𝑛 ⟶ 𝐴 → 𝑠 ⊆ ( suc 𝑛 × 𝐴 ) ) |
7 |
|
peano2 |
⊢ ( 𝑛 ∈ ω → suc 𝑛 ∈ ω ) |
8 |
|
omelon2 |
⊢ ( ω ∈ V → ω ∈ On ) |
9 |
3 8
|
ax-mp |
⊢ ω ∈ On |
10 |
9
|
onelssi |
⊢ ( suc 𝑛 ∈ ω → suc 𝑛 ⊆ ω ) |
11 |
|
xpss1 |
⊢ ( suc 𝑛 ⊆ ω → ( suc 𝑛 × 𝐴 ) ⊆ ( ω × 𝐴 ) ) |
12 |
7 10 11
|
3syl |
⊢ ( 𝑛 ∈ ω → ( suc 𝑛 × 𝐴 ) ⊆ ( ω × 𝐴 ) ) |
13 |
6 12
|
sylan9ss |
⊢ ( ( 𝑠 : suc 𝑛 ⟶ 𝐴 ∧ 𝑛 ∈ ω ) → 𝑠 ⊆ ( ω × 𝐴 ) ) |
14 |
|
velpw |
⊢ ( 𝑠 ∈ 𝒫 ( ω × 𝐴 ) ↔ 𝑠 ⊆ ( ω × 𝐴 ) ) |
15 |
13 14
|
sylibr |
⊢ ( ( 𝑠 : suc 𝑛 ⟶ 𝐴 ∧ 𝑛 ∈ ω ) → 𝑠 ∈ 𝒫 ( ω × 𝐴 ) ) |
16 |
15
|
ancoms |
⊢ ( ( 𝑛 ∈ ω ∧ 𝑠 : suc 𝑛 ⟶ 𝐴 ) → 𝑠 ∈ 𝒫 ( ω × 𝐴 ) ) |
17 |
16
|
3ad2antr1 |
⊢ ( ( 𝑛 ∈ ω ∧ ( 𝑠 : suc 𝑛 ⟶ 𝐴 ∧ ( 𝑠 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘 ∈ 𝑛 ( 𝑠 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑠 ‘ 𝑘 ) ) ) ) → 𝑠 ∈ 𝒫 ( ω × 𝐴 ) ) |
18 |
17
|
rexlimiva |
⊢ ( ∃ 𝑛 ∈ ω ( 𝑠 : suc 𝑛 ⟶ 𝐴 ∧ ( 𝑠 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘 ∈ 𝑛 ( 𝑠 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑠 ‘ 𝑘 ) ) ) → 𝑠 ∈ 𝒫 ( ω × 𝐴 ) ) |
19 |
18
|
abssi |
⊢ { 𝑠 ∣ ∃ 𝑛 ∈ ω ( 𝑠 : suc 𝑛 ⟶ 𝐴 ∧ ( 𝑠 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘 ∈ 𝑛 ( 𝑠 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑠 ‘ 𝑘 ) ) ) } ⊆ 𝒫 ( ω × 𝐴 ) |
20 |
2 19
|
eqsstri |
⊢ 𝑆 ⊆ 𝒫 ( ω × 𝐴 ) |
21 |
5 20
|
ssexi |
⊢ 𝑆 ∈ V |