Metamath Proof Explorer


Theorem axdc3lem

Description: The class S of finite approximations to the DC sequence is a set. (We derive here the stronger statement that S is a subset of a specific set, namely ~P ( _om X. A ) .) (Contributed by Mario Carneiro, 27-Jan-2013) Remove unnecessary distinct variable conditions. (Revised by David Abernethy, 18-Mar-2014)

Ref Expression
Hypotheses axdc3lem.1 𝐴 ∈ V
axdc3lem.2 𝑆 = { 𝑠 ∣ ∃ 𝑛 ∈ ω ( 𝑠 : suc 𝑛𝐴 ∧ ( 𝑠 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘𝑛 ( 𝑠 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑠𝑘 ) ) ) }
Assertion axdc3lem 𝑆 ∈ V

Proof

Step Hyp Ref Expression
1 axdc3lem.1 𝐴 ∈ V
2 axdc3lem.2 𝑆 = { 𝑠 ∣ ∃ 𝑛 ∈ ω ( 𝑠 : suc 𝑛𝐴 ∧ ( 𝑠 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘𝑛 ( 𝑠 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑠𝑘 ) ) ) }
3 dcomex ω ∈ V
4 3 1 xpex ( ω × 𝐴 ) ∈ V
5 4 pwex 𝒫 ( ω × 𝐴 ) ∈ V
6 fssxp ( 𝑠 : suc 𝑛𝐴𝑠 ⊆ ( suc 𝑛 × 𝐴 ) )
7 peano2 ( 𝑛 ∈ ω → suc 𝑛 ∈ ω )
8 omelon2 ( ω ∈ V → ω ∈ On )
9 3 8 ax-mp ω ∈ On
10 9 onelssi ( suc 𝑛 ∈ ω → suc 𝑛 ⊆ ω )
11 xpss1 ( suc 𝑛 ⊆ ω → ( suc 𝑛 × 𝐴 ) ⊆ ( ω × 𝐴 ) )
12 7 10 11 3syl ( 𝑛 ∈ ω → ( suc 𝑛 × 𝐴 ) ⊆ ( ω × 𝐴 ) )
13 6 12 sylan9ss ( ( 𝑠 : suc 𝑛𝐴𝑛 ∈ ω ) → 𝑠 ⊆ ( ω × 𝐴 ) )
14 velpw ( 𝑠 ∈ 𝒫 ( ω × 𝐴 ) ↔ 𝑠 ⊆ ( ω × 𝐴 ) )
15 13 14 sylibr ( ( 𝑠 : suc 𝑛𝐴𝑛 ∈ ω ) → 𝑠 ∈ 𝒫 ( ω × 𝐴 ) )
16 15 ancoms ( ( 𝑛 ∈ ω ∧ 𝑠 : suc 𝑛𝐴 ) → 𝑠 ∈ 𝒫 ( ω × 𝐴 ) )
17 16 3ad2antr1 ( ( 𝑛 ∈ ω ∧ ( 𝑠 : suc 𝑛𝐴 ∧ ( 𝑠 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘𝑛 ( 𝑠 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑠𝑘 ) ) ) ) → 𝑠 ∈ 𝒫 ( ω × 𝐴 ) )
18 17 rexlimiva ( ∃ 𝑛 ∈ ω ( 𝑠 : suc 𝑛𝐴 ∧ ( 𝑠 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘𝑛 ( 𝑠 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑠𝑘 ) ) ) → 𝑠 ∈ 𝒫 ( ω × 𝐴 ) )
19 18 abssi { 𝑠 ∣ ∃ 𝑛 ∈ ω ( 𝑠 : suc 𝑛𝐴 ∧ ( 𝑠 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘𝑛 ( 𝑠 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑠𝑘 ) ) ) } ⊆ 𝒫 ( ω × 𝐴 )
20 2 19 eqsstri 𝑆 ⊆ 𝒫 ( ω × 𝐴 )
21 5 20 ssexi 𝑆 ∈ V