| Step | Hyp | Ref | Expression | 
						
							| 1 |  | axdc3lem2.1 | ⊢ 𝐴  ∈  V | 
						
							| 2 |  | axdc3lem2.2 | ⊢ 𝑆  =  { 𝑠  ∣  ∃ 𝑛  ∈  ω ( 𝑠 : suc  𝑛 ⟶ 𝐴  ∧  ( 𝑠 ‘ ∅ )  =  𝐶  ∧  ∀ 𝑘  ∈  𝑛 ( 𝑠 ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( 𝑠 ‘ 𝑘 ) ) ) } | 
						
							| 3 |  | axdc3lem2.3 | ⊢ 𝐺  =  ( 𝑥  ∈  𝑆  ↦  { 𝑦  ∈  𝑆  ∣  ( dom  𝑦  =  suc  dom  𝑥  ∧  ( 𝑦  ↾  dom  𝑥 )  =  𝑥 ) } ) | 
						
							| 4 |  | id | ⊢ ( 𝑚  =  ∅  →  𝑚  =  ∅ ) | 
						
							| 5 |  | fveq2 | ⊢ ( 𝑚  =  ∅  →  ( ℎ ‘ 𝑚 )  =  ( ℎ ‘ ∅ ) ) | 
						
							| 6 | 5 | dmeqd | ⊢ ( 𝑚  =  ∅  →  dom  ( ℎ ‘ 𝑚 )  =  dom  ( ℎ ‘ ∅ ) ) | 
						
							| 7 | 4 6 | eleq12d | ⊢ ( 𝑚  =  ∅  →  ( 𝑚  ∈  dom  ( ℎ ‘ 𝑚 )  ↔  ∅  ∈  dom  ( ℎ ‘ ∅ ) ) ) | 
						
							| 8 |  | eleq2 | ⊢ ( 𝑚  =  ∅  →  ( 𝑗  ∈  𝑚  ↔  𝑗  ∈  ∅ ) ) | 
						
							| 9 | 5 | sseq2d | ⊢ ( 𝑚  =  ∅  →  ( ( ℎ ‘ 𝑗 )  ⊆  ( ℎ ‘ 𝑚 )  ↔  ( ℎ ‘ 𝑗 )  ⊆  ( ℎ ‘ ∅ ) ) ) | 
						
							| 10 | 8 9 | imbi12d | ⊢ ( 𝑚  =  ∅  →  ( ( 𝑗  ∈  𝑚  →  ( ℎ ‘ 𝑗 )  ⊆  ( ℎ ‘ 𝑚 ) )  ↔  ( 𝑗  ∈  ∅  →  ( ℎ ‘ 𝑗 )  ⊆  ( ℎ ‘ ∅ ) ) ) ) | 
						
							| 11 | 7 10 | anbi12d | ⊢ ( 𝑚  =  ∅  →  ( ( 𝑚  ∈  dom  ( ℎ ‘ 𝑚 )  ∧  ( 𝑗  ∈  𝑚  →  ( ℎ ‘ 𝑗 )  ⊆  ( ℎ ‘ 𝑚 ) ) )  ↔  ( ∅  ∈  dom  ( ℎ ‘ ∅ )  ∧  ( 𝑗  ∈  ∅  →  ( ℎ ‘ 𝑗 )  ⊆  ( ℎ ‘ ∅ ) ) ) ) ) | 
						
							| 12 |  | id | ⊢ ( 𝑚  =  𝑖  →  𝑚  =  𝑖 ) | 
						
							| 13 |  | fveq2 | ⊢ ( 𝑚  =  𝑖  →  ( ℎ ‘ 𝑚 )  =  ( ℎ ‘ 𝑖 ) ) | 
						
							| 14 | 13 | dmeqd | ⊢ ( 𝑚  =  𝑖  →  dom  ( ℎ ‘ 𝑚 )  =  dom  ( ℎ ‘ 𝑖 ) ) | 
						
							| 15 | 12 14 | eleq12d | ⊢ ( 𝑚  =  𝑖  →  ( 𝑚  ∈  dom  ( ℎ ‘ 𝑚 )  ↔  𝑖  ∈  dom  ( ℎ ‘ 𝑖 ) ) ) | 
						
							| 16 |  | elequ2 | ⊢ ( 𝑚  =  𝑖  →  ( 𝑗  ∈  𝑚  ↔  𝑗  ∈  𝑖 ) ) | 
						
							| 17 | 13 | sseq2d | ⊢ ( 𝑚  =  𝑖  →  ( ( ℎ ‘ 𝑗 )  ⊆  ( ℎ ‘ 𝑚 )  ↔  ( ℎ ‘ 𝑗 )  ⊆  ( ℎ ‘ 𝑖 ) ) ) | 
						
							| 18 | 16 17 | imbi12d | ⊢ ( 𝑚  =  𝑖  →  ( ( 𝑗  ∈  𝑚  →  ( ℎ ‘ 𝑗 )  ⊆  ( ℎ ‘ 𝑚 ) )  ↔  ( 𝑗  ∈  𝑖  →  ( ℎ ‘ 𝑗 )  ⊆  ( ℎ ‘ 𝑖 ) ) ) ) | 
						
							| 19 | 15 18 | anbi12d | ⊢ ( 𝑚  =  𝑖  →  ( ( 𝑚  ∈  dom  ( ℎ ‘ 𝑚 )  ∧  ( 𝑗  ∈  𝑚  →  ( ℎ ‘ 𝑗 )  ⊆  ( ℎ ‘ 𝑚 ) ) )  ↔  ( 𝑖  ∈  dom  ( ℎ ‘ 𝑖 )  ∧  ( 𝑗  ∈  𝑖  →  ( ℎ ‘ 𝑗 )  ⊆  ( ℎ ‘ 𝑖 ) ) ) ) ) | 
						
							| 20 |  | id | ⊢ ( 𝑚  =  suc  𝑖  →  𝑚  =  suc  𝑖 ) | 
						
							| 21 |  | fveq2 | ⊢ ( 𝑚  =  suc  𝑖  →  ( ℎ ‘ 𝑚 )  =  ( ℎ ‘ suc  𝑖 ) ) | 
						
							| 22 | 21 | dmeqd | ⊢ ( 𝑚  =  suc  𝑖  →  dom  ( ℎ ‘ 𝑚 )  =  dom  ( ℎ ‘ suc  𝑖 ) ) | 
						
							| 23 | 20 22 | eleq12d | ⊢ ( 𝑚  =  suc  𝑖  →  ( 𝑚  ∈  dom  ( ℎ ‘ 𝑚 )  ↔  suc  𝑖  ∈  dom  ( ℎ ‘ suc  𝑖 ) ) ) | 
						
							| 24 |  | eleq2 | ⊢ ( 𝑚  =  suc  𝑖  →  ( 𝑗  ∈  𝑚  ↔  𝑗  ∈  suc  𝑖 ) ) | 
						
							| 25 | 21 | sseq2d | ⊢ ( 𝑚  =  suc  𝑖  →  ( ( ℎ ‘ 𝑗 )  ⊆  ( ℎ ‘ 𝑚 )  ↔  ( ℎ ‘ 𝑗 )  ⊆  ( ℎ ‘ suc  𝑖 ) ) ) | 
						
							| 26 | 24 25 | imbi12d | ⊢ ( 𝑚  =  suc  𝑖  →  ( ( 𝑗  ∈  𝑚  →  ( ℎ ‘ 𝑗 )  ⊆  ( ℎ ‘ 𝑚 ) )  ↔  ( 𝑗  ∈  suc  𝑖  →  ( ℎ ‘ 𝑗 )  ⊆  ( ℎ ‘ suc  𝑖 ) ) ) ) | 
						
							| 27 | 23 26 | anbi12d | ⊢ ( 𝑚  =  suc  𝑖  →  ( ( 𝑚  ∈  dom  ( ℎ ‘ 𝑚 )  ∧  ( 𝑗  ∈  𝑚  →  ( ℎ ‘ 𝑗 )  ⊆  ( ℎ ‘ 𝑚 ) ) )  ↔  ( suc  𝑖  ∈  dom  ( ℎ ‘ suc  𝑖 )  ∧  ( 𝑗  ∈  suc  𝑖  →  ( ℎ ‘ 𝑗 )  ⊆  ( ℎ ‘ suc  𝑖 ) ) ) ) ) | 
						
							| 28 |  | peano1 | ⊢ ∅  ∈  ω | 
						
							| 29 |  | ffvelcdm | ⊢ ( ( ℎ : ω ⟶ 𝑆  ∧  ∅  ∈  ω )  →  ( ℎ ‘ ∅ )  ∈  𝑆 ) | 
						
							| 30 | 28 29 | mpan2 | ⊢ ( ℎ : ω ⟶ 𝑆  →  ( ℎ ‘ ∅ )  ∈  𝑆 ) | 
						
							| 31 |  | fdm | ⊢ ( 𝑠 : suc  𝑛 ⟶ 𝐴  →  dom  𝑠  =  suc  𝑛 ) | 
						
							| 32 |  | nnord | ⊢ ( 𝑛  ∈  ω  →  Ord  𝑛 ) | 
						
							| 33 |  | 0elsuc | ⊢ ( Ord  𝑛  →  ∅  ∈  suc  𝑛 ) | 
						
							| 34 | 32 33 | syl | ⊢ ( 𝑛  ∈  ω  →  ∅  ∈  suc  𝑛 ) | 
						
							| 35 |  | peano2 | ⊢ ( 𝑛  ∈  ω  →  suc  𝑛  ∈  ω ) | 
						
							| 36 |  | eleq2 | ⊢ ( dom  𝑠  =  suc  𝑛  →  ( ∅  ∈  dom  𝑠  ↔  ∅  ∈  suc  𝑛 ) ) | 
						
							| 37 |  | eleq1 | ⊢ ( dom  𝑠  =  suc  𝑛  →  ( dom  𝑠  ∈  ω  ↔  suc  𝑛  ∈  ω ) ) | 
						
							| 38 | 36 37 | anbi12d | ⊢ ( dom  𝑠  =  suc  𝑛  →  ( ( ∅  ∈  dom  𝑠  ∧  dom  𝑠  ∈  ω )  ↔  ( ∅  ∈  suc  𝑛  ∧  suc  𝑛  ∈  ω ) ) ) | 
						
							| 39 | 38 | biimprcd | ⊢ ( ( ∅  ∈  suc  𝑛  ∧  suc  𝑛  ∈  ω )  →  ( dom  𝑠  =  suc  𝑛  →  ( ∅  ∈  dom  𝑠  ∧  dom  𝑠  ∈  ω ) ) ) | 
						
							| 40 | 34 35 39 | syl2anc | ⊢ ( 𝑛  ∈  ω  →  ( dom  𝑠  =  suc  𝑛  →  ( ∅  ∈  dom  𝑠  ∧  dom  𝑠  ∈  ω ) ) ) | 
						
							| 41 | 31 40 | syl5com | ⊢ ( 𝑠 : suc  𝑛 ⟶ 𝐴  →  ( 𝑛  ∈  ω  →  ( ∅  ∈  dom  𝑠  ∧  dom  𝑠  ∈  ω ) ) ) | 
						
							| 42 | 41 | 3ad2ant1 | ⊢ ( ( 𝑠 : suc  𝑛 ⟶ 𝐴  ∧  ( 𝑠 ‘ ∅ )  =  𝐶  ∧  ∀ 𝑘  ∈  𝑛 ( 𝑠 ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( 𝑠 ‘ 𝑘 ) ) )  →  ( 𝑛  ∈  ω  →  ( ∅  ∈  dom  𝑠  ∧  dom  𝑠  ∈  ω ) ) ) | 
						
							| 43 | 42 | impcom | ⊢ ( ( 𝑛  ∈  ω  ∧  ( 𝑠 : suc  𝑛 ⟶ 𝐴  ∧  ( 𝑠 ‘ ∅ )  =  𝐶  ∧  ∀ 𝑘  ∈  𝑛 ( 𝑠 ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( 𝑠 ‘ 𝑘 ) ) ) )  →  ( ∅  ∈  dom  𝑠  ∧  dom  𝑠  ∈  ω ) ) | 
						
							| 44 | 43 | rexlimiva | ⊢ ( ∃ 𝑛  ∈  ω ( 𝑠 : suc  𝑛 ⟶ 𝐴  ∧  ( 𝑠 ‘ ∅ )  =  𝐶  ∧  ∀ 𝑘  ∈  𝑛 ( 𝑠 ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( 𝑠 ‘ 𝑘 ) ) )  →  ( ∅  ∈  dom  𝑠  ∧  dom  𝑠  ∈  ω ) ) | 
						
							| 45 | 44 | ss2abi | ⊢ { 𝑠  ∣  ∃ 𝑛  ∈  ω ( 𝑠 : suc  𝑛 ⟶ 𝐴  ∧  ( 𝑠 ‘ ∅ )  =  𝐶  ∧  ∀ 𝑘  ∈  𝑛 ( 𝑠 ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( 𝑠 ‘ 𝑘 ) ) ) }  ⊆  { 𝑠  ∣  ( ∅  ∈  dom  𝑠  ∧  dom  𝑠  ∈  ω ) } | 
						
							| 46 | 2 45 | eqsstri | ⊢ 𝑆  ⊆  { 𝑠  ∣  ( ∅  ∈  dom  𝑠  ∧  dom  𝑠  ∈  ω ) } | 
						
							| 47 | 46 | sseli | ⊢ ( ( ℎ ‘ ∅ )  ∈  𝑆  →  ( ℎ ‘ ∅ )  ∈  { 𝑠  ∣  ( ∅  ∈  dom  𝑠  ∧  dom  𝑠  ∈  ω ) } ) | 
						
							| 48 |  | fvex | ⊢ ( ℎ ‘ ∅ )  ∈  V | 
						
							| 49 |  | dmeq | ⊢ ( 𝑠  =  ( ℎ ‘ ∅ )  →  dom  𝑠  =  dom  ( ℎ ‘ ∅ ) ) | 
						
							| 50 | 49 | eleq2d | ⊢ ( 𝑠  =  ( ℎ ‘ ∅ )  →  ( ∅  ∈  dom  𝑠  ↔  ∅  ∈  dom  ( ℎ ‘ ∅ ) ) ) | 
						
							| 51 | 49 | eleq1d | ⊢ ( 𝑠  =  ( ℎ ‘ ∅ )  →  ( dom  𝑠  ∈  ω  ↔  dom  ( ℎ ‘ ∅ )  ∈  ω ) ) | 
						
							| 52 | 50 51 | anbi12d | ⊢ ( 𝑠  =  ( ℎ ‘ ∅ )  →  ( ( ∅  ∈  dom  𝑠  ∧  dom  𝑠  ∈  ω )  ↔  ( ∅  ∈  dom  ( ℎ ‘ ∅ )  ∧  dom  ( ℎ ‘ ∅ )  ∈  ω ) ) ) | 
						
							| 53 | 48 52 | elab | ⊢ ( ( ℎ ‘ ∅ )  ∈  { 𝑠  ∣  ( ∅  ∈  dom  𝑠  ∧  dom  𝑠  ∈  ω ) }  ↔  ( ∅  ∈  dom  ( ℎ ‘ ∅ )  ∧  dom  ( ℎ ‘ ∅ )  ∈  ω ) ) | 
						
							| 54 | 47 53 | sylib | ⊢ ( ( ℎ ‘ ∅ )  ∈  𝑆  →  ( ∅  ∈  dom  ( ℎ ‘ ∅ )  ∧  dom  ( ℎ ‘ ∅ )  ∈  ω ) ) | 
						
							| 55 | 54 | simpld | ⊢ ( ( ℎ ‘ ∅ )  ∈  𝑆  →  ∅  ∈  dom  ( ℎ ‘ ∅ ) ) | 
						
							| 56 | 30 55 | syl | ⊢ ( ℎ : ω ⟶ 𝑆  →  ∅  ∈  dom  ( ℎ ‘ ∅ ) ) | 
						
							| 57 |  | noel | ⊢ ¬  𝑗  ∈  ∅ | 
						
							| 58 | 57 | pm2.21i | ⊢ ( 𝑗  ∈  ∅  →  ( ℎ ‘ 𝑗 )  ⊆  ( ℎ ‘ ∅ ) ) | 
						
							| 59 | 56 58 | jctir | ⊢ ( ℎ : ω ⟶ 𝑆  →  ( ∅  ∈  dom  ( ℎ ‘ ∅ )  ∧  ( 𝑗  ∈  ∅  →  ( ℎ ‘ 𝑗 )  ⊆  ( ℎ ‘ ∅ ) ) ) ) | 
						
							| 60 | 59 | adantr | ⊢ ( ( ℎ : ω ⟶ 𝑆  ∧  ∀ 𝑘  ∈  ω ( ℎ ‘ suc  𝑘 )  ∈  ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) )  →  ( ∅  ∈  dom  ( ℎ ‘ ∅ )  ∧  ( 𝑗  ∈  ∅  →  ( ℎ ‘ 𝑗 )  ⊆  ( ℎ ‘ ∅ ) ) ) ) | 
						
							| 61 |  | ffvelcdm | ⊢ ( ( ℎ : ω ⟶ 𝑆  ∧  𝑖  ∈  ω )  →  ( ℎ ‘ 𝑖 )  ∈  𝑆 ) | 
						
							| 62 | 61 | ancoms | ⊢ ( ( 𝑖  ∈  ω  ∧  ℎ : ω ⟶ 𝑆 )  →  ( ℎ ‘ 𝑖 )  ∈  𝑆 ) | 
						
							| 63 | 62 | adantrr | ⊢ ( ( 𝑖  ∈  ω  ∧  ( ℎ : ω ⟶ 𝑆  ∧  ∀ 𝑘  ∈  ω ( ℎ ‘ suc  𝑘 )  ∈  ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) )  →  ( ℎ ‘ 𝑖 )  ∈  𝑆 ) | 
						
							| 64 |  | suceq | ⊢ ( 𝑘  =  𝑖  →  suc  𝑘  =  suc  𝑖 ) | 
						
							| 65 | 64 | fveq2d | ⊢ ( 𝑘  =  𝑖  →  ( ℎ ‘ suc  𝑘 )  =  ( ℎ ‘ suc  𝑖 ) ) | 
						
							| 66 |  | 2fveq3 | ⊢ ( 𝑘  =  𝑖  →  ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) )  =  ( 𝐺 ‘ ( ℎ ‘ 𝑖 ) ) ) | 
						
							| 67 | 65 66 | eleq12d | ⊢ ( 𝑘  =  𝑖  →  ( ( ℎ ‘ suc  𝑘 )  ∈  ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) )  ↔  ( ℎ ‘ suc  𝑖 )  ∈  ( 𝐺 ‘ ( ℎ ‘ 𝑖 ) ) ) ) | 
						
							| 68 | 67 | rspcva | ⊢ ( ( 𝑖  ∈  ω  ∧  ∀ 𝑘  ∈  ω ( ℎ ‘ suc  𝑘 )  ∈  ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) )  →  ( ℎ ‘ suc  𝑖 )  ∈  ( 𝐺 ‘ ( ℎ ‘ 𝑖 ) ) ) | 
						
							| 69 | 68 | adantrl | ⊢ ( ( 𝑖  ∈  ω  ∧  ( ℎ : ω ⟶ 𝑆  ∧  ∀ 𝑘  ∈  ω ( ℎ ‘ suc  𝑘 )  ∈  ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) )  →  ( ℎ ‘ suc  𝑖 )  ∈  ( 𝐺 ‘ ( ℎ ‘ 𝑖 ) ) ) | 
						
							| 70 | 46 | sseli | ⊢ ( ( ℎ ‘ 𝑖 )  ∈  𝑆  →  ( ℎ ‘ 𝑖 )  ∈  { 𝑠  ∣  ( ∅  ∈  dom  𝑠  ∧  dom  𝑠  ∈  ω ) } ) | 
						
							| 71 |  | fvex | ⊢ ( ℎ ‘ 𝑖 )  ∈  V | 
						
							| 72 |  | dmeq | ⊢ ( 𝑠  =  ( ℎ ‘ 𝑖 )  →  dom  𝑠  =  dom  ( ℎ ‘ 𝑖 ) ) | 
						
							| 73 | 72 | eleq2d | ⊢ ( 𝑠  =  ( ℎ ‘ 𝑖 )  →  ( ∅  ∈  dom  𝑠  ↔  ∅  ∈  dom  ( ℎ ‘ 𝑖 ) ) ) | 
						
							| 74 | 72 | eleq1d | ⊢ ( 𝑠  =  ( ℎ ‘ 𝑖 )  →  ( dom  𝑠  ∈  ω  ↔  dom  ( ℎ ‘ 𝑖 )  ∈  ω ) ) | 
						
							| 75 | 73 74 | anbi12d | ⊢ ( 𝑠  =  ( ℎ ‘ 𝑖 )  →  ( ( ∅  ∈  dom  𝑠  ∧  dom  𝑠  ∈  ω )  ↔  ( ∅  ∈  dom  ( ℎ ‘ 𝑖 )  ∧  dom  ( ℎ ‘ 𝑖 )  ∈  ω ) ) ) | 
						
							| 76 | 71 75 | elab | ⊢ ( ( ℎ ‘ 𝑖 )  ∈  { 𝑠  ∣  ( ∅  ∈  dom  𝑠  ∧  dom  𝑠  ∈  ω ) }  ↔  ( ∅  ∈  dom  ( ℎ ‘ 𝑖 )  ∧  dom  ( ℎ ‘ 𝑖 )  ∈  ω ) ) | 
						
							| 77 | 70 76 | sylib | ⊢ ( ( ℎ ‘ 𝑖 )  ∈  𝑆  →  ( ∅  ∈  dom  ( ℎ ‘ 𝑖 )  ∧  dom  ( ℎ ‘ 𝑖 )  ∈  ω ) ) | 
						
							| 78 | 77 | simprd | ⊢ ( ( ℎ ‘ 𝑖 )  ∈  𝑆  →  dom  ( ℎ ‘ 𝑖 )  ∈  ω ) | 
						
							| 79 |  | nnord | ⊢ ( dom  ( ℎ ‘ 𝑖 )  ∈  ω  →  Ord  dom  ( ℎ ‘ 𝑖 ) ) | 
						
							| 80 |  | ordsucelsuc | ⊢ ( Ord  dom  ( ℎ ‘ 𝑖 )  →  ( 𝑖  ∈  dom  ( ℎ ‘ 𝑖 )  ↔  suc  𝑖  ∈  suc  dom  ( ℎ ‘ 𝑖 ) ) ) | 
						
							| 81 | 78 79 80 | 3syl | ⊢ ( ( ℎ ‘ 𝑖 )  ∈  𝑆  →  ( 𝑖  ∈  dom  ( ℎ ‘ 𝑖 )  ↔  suc  𝑖  ∈  suc  dom  ( ℎ ‘ 𝑖 ) ) ) | 
						
							| 82 | 81 | adantr | ⊢ ( ( ( ℎ ‘ 𝑖 )  ∈  𝑆  ∧  ( ℎ ‘ suc  𝑖 )  ∈  ( 𝐺 ‘ ( ℎ ‘ 𝑖 ) ) )  →  ( 𝑖  ∈  dom  ( ℎ ‘ 𝑖 )  ↔  suc  𝑖  ∈  suc  dom  ( ℎ ‘ 𝑖 ) ) ) | 
						
							| 83 |  | dmeq | ⊢ ( 𝑥  =  ( ℎ ‘ 𝑖 )  →  dom  𝑥  =  dom  ( ℎ ‘ 𝑖 ) ) | 
						
							| 84 |  | suceq | ⊢ ( dom  𝑥  =  dom  ( ℎ ‘ 𝑖 )  →  suc  dom  𝑥  =  suc  dom  ( ℎ ‘ 𝑖 ) ) | 
						
							| 85 | 83 84 | syl | ⊢ ( 𝑥  =  ( ℎ ‘ 𝑖 )  →  suc  dom  𝑥  =  suc  dom  ( ℎ ‘ 𝑖 ) ) | 
						
							| 86 | 85 | eqeq2d | ⊢ ( 𝑥  =  ( ℎ ‘ 𝑖 )  →  ( dom  𝑦  =  suc  dom  𝑥  ↔  dom  𝑦  =  suc  dom  ( ℎ ‘ 𝑖 ) ) ) | 
						
							| 87 | 83 | reseq2d | ⊢ ( 𝑥  =  ( ℎ ‘ 𝑖 )  →  ( 𝑦  ↾  dom  𝑥 )  =  ( 𝑦  ↾  dom  ( ℎ ‘ 𝑖 ) ) ) | 
						
							| 88 |  | id | ⊢ ( 𝑥  =  ( ℎ ‘ 𝑖 )  →  𝑥  =  ( ℎ ‘ 𝑖 ) ) | 
						
							| 89 | 87 88 | eqeq12d | ⊢ ( 𝑥  =  ( ℎ ‘ 𝑖 )  →  ( ( 𝑦  ↾  dom  𝑥 )  =  𝑥  ↔  ( 𝑦  ↾  dom  ( ℎ ‘ 𝑖 ) )  =  ( ℎ ‘ 𝑖 ) ) ) | 
						
							| 90 | 86 89 | anbi12d | ⊢ ( 𝑥  =  ( ℎ ‘ 𝑖 )  →  ( ( dom  𝑦  =  suc  dom  𝑥  ∧  ( 𝑦  ↾  dom  𝑥 )  =  𝑥 )  ↔  ( dom  𝑦  =  suc  dom  ( ℎ ‘ 𝑖 )  ∧  ( 𝑦  ↾  dom  ( ℎ ‘ 𝑖 ) )  =  ( ℎ ‘ 𝑖 ) ) ) ) | 
						
							| 91 | 90 | rabbidv | ⊢ ( 𝑥  =  ( ℎ ‘ 𝑖 )  →  { 𝑦  ∈  𝑆  ∣  ( dom  𝑦  =  suc  dom  𝑥  ∧  ( 𝑦  ↾  dom  𝑥 )  =  𝑥 ) }  =  { 𝑦  ∈  𝑆  ∣  ( dom  𝑦  =  suc  dom  ( ℎ ‘ 𝑖 )  ∧  ( 𝑦  ↾  dom  ( ℎ ‘ 𝑖 ) )  =  ( ℎ ‘ 𝑖 ) ) } ) | 
						
							| 92 | 1 2 | axdc3lem | ⊢ 𝑆  ∈  V | 
						
							| 93 | 92 | rabex | ⊢ { 𝑦  ∈  𝑆  ∣  ( dom  𝑦  =  suc  dom  ( ℎ ‘ 𝑖 )  ∧  ( 𝑦  ↾  dom  ( ℎ ‘ 𝑖 ) )  =  ( ℎ ‘ 𝑖 ) ) }  ∈  V | 
						
							| 94 | 91 3 93 | fvmpt | ⊢ ( ( ℎ ‘ 𝑖 )  ∈  𝑆  →  ( 𝐺 ‘ ( ℎ ‘ 𝑖 ) )  =  { 𝑦  ∈  𝑆  ∣  ( dom  𝑦  =  suc  dom  ( ℎ ‘ 𝑖 )  ∧  ( 𝑦  ↾  dom  ( ℎ ‘ 𝑖 ) )  =  ( ℎ ‘ 𝑖 ) ) } ) | 
						
							| 95 | 94 | eleq2d | ⊢ ( ( ℎ ‘ 𝑖 )  ∈  𝑆  →  ( ( ℎ ‘ suc  𝑖 )  ∈  ( 𝐺 ‘ ( ℎ ‘ 𝑖 ) )  ↔  ( ℎ ‘ suc  𝑖 )  ∈  { 𝑦  ∈  𝑆  ∣  ( dom  𝑦  =  suc  dom  ( ℎ ‘ 𝑖 )  ∧  ( 𝑦  ↾  dom  ( ℎ ‘ 𝑖 ) )  =  ( ℎ ‘ 𝑖 ) ) } ) ) | 
						
							| 96 |  | dmeq | ⊢ ( 𝑦  =  ( ℎ ‘ suc  𝑖 )  →  dom  𝑦  =  dom  ( ℎ ‘ suc  𝑖 ) ) | 
						
							| 97 | 96 | eqeq1d | ⊢ ( 𝑦  =  ( ℎ ‘ suc  𝑖 )  →  ( dom  𝑦  =  suc  dom  ( ℎ ‘ 𝑖 )  ↔  dom  ( ℎ ‘ suc  𝑖 )  =  suc  dom  ( ℎ ‘ 𝑖 ) ) ) | 
						
							| 98 |  | reseq1 | ⊢ ( 𝑦  =  ( ℎ ‘ suc  𝑖 )  →  ( 𝑦  ↾  dom  ( ℎ ‘ 𝑖 ) )  =  ( ( ℎ ‘ suc  𝑖 )  ↾  dom  ( ℎ ‘ 𝑖 ) ) ) | 
						
							| 99 | 98 | eqeq1d | ⊢ ( 𝑦  =  ( ℎ ‘ suc  𝑖 )  →  ( ( 𝑦  ↾  dom  ( ℎ ‘ 𝑖 ) )  =  ( ℎ ‘ 𝑖 )  ↔  ( ( ℎ ‘ suc  𝑖 )  ↾  dom  ( ℎ ‘ 𝑖 ) )  =  ( ℎ ‘ 𝑖 ) ) ) | 
						
							| 100 | 97 99 | anbi12d | ⊢ ( 𝑦  =  ( ℎ ‘ suc  𝑖 )  →  ( ( dom  𝑦  =  suc  dom  ( ℎ ‘ 𝑖 )  ∧  ( 𝑦  ↾  dom  ( ℎ ‘ 𝑖 ) )  =  ( ℎ ‘ 𝑖 ) )  ↔  ( dom  ( ℎ ‘ suc  𝑖 )  =  suc  dom  ( ℎ ‘ 𝑖 )  ∧  ( ( ℎ ‘ suc  𝑖 )  ↾  dom  ( ℎ ‘ 𝑖 ) )  =  ( ℎ ‘ 𝑖 ) ) ) ) | 
						
							| 101 | 100 | elrab | ⊢ ( ( ℎ ‘ suc  𝑖 )  ∈  { 𝑦  ∈  𝑆  ∣  ( dom  𝑦  =  suc  dom  ( ℎ ‘ 𝑖 )  ∧  ( 𝑦  ↾  dom  ( ℎ ‘ 𝑖 ) )  =  ( ℎ ‘ 𝑖 ) ) }  ↔  ( ( ℎ ‘ suc  𝑖 )  ∈  𝑆  ∧  ( dom  ( ℎ ‘ suc  𝑖 )  =  suc  dom  ( ℎ ‘ 𝑖 )  ∧  ( ( ℎ ‘ suc  𝑖 )  ↾  dom  ( ℎ ‘ 𝑖 ) )  =  ( ℎ ‘ 𝑖 ) ) ) ) | 
						
							| 102 | 95 101 | bitrdi | ⊢ ( ( ℎ ‘ 𝑖 )  ∈  𝑆  →  ( ( ℎ ‘ suc  𝑖 )  ∈  ( 𝐺 ‘ ( ℎ ‘ 𝑖 ) )  ↔  ( ( ℎ ‘ suc  𝑖 )  ∈  𝑆  ∧  ( dom  ( ℎ ‘ suc  𝑖 )  =  suc  dom  ( ℎ ‘ 𝑖 )  ∧  ( ( ℎ ‘ suc  𝑖 )  ↾  dom  ( ℎ ‘ 𝑖 ) )  =  ( ℎ ‘ 𝑖 ) ) ) ) ) | 
						
							| 103 | 102 | simplbda | ⊢ ( ( ( ℎ ‘ 𝑖 )  ∈  𝑆  ∧  ( ℎ ‘ suc  𝑖 )  ∈  ( 𝐺 ‘ ( ℎ ‘ 𝑖 ) ) )  →  ( dom  ( ℎ ‘ suc  𝑖 )  =  suc  dom  ( ℎ ‘ 𝑖 )  ∧  ( ( ℎ ‘ suc  𝑖 )  ↾  dom  ( ℎ ‘ 𝑖 ) )  =  ( ℎ ‘ 𝑖 ) ) ) | 
						
							| 104 | 103 | simpld | ⊢ ( ( ( ℎ ‘ 𝑖 )  ∈  𝑆  ∧  ( ℎ ‘ suc  𝑖 )  ∈  ( 𝐺 ‘ ( ℎ ‘ 𝑖 ) ) )  →  dom  ( ℎ ‘ suc  𝑖 )  =  suc  dom  ( ℎ ‘ 𝑖 ) ) | 
						
							| 105 | 104 | eleq2d | ⊢ ( ( ( ℎ ‘ 𝑖 )  ∈  𝑆  ∧  ( ℎ ‘ suc  𝑖 )  ∈  ( 𝐺 ‘ ( ℎ ‘ 𝑖 ) ) )  →  ( suc  𝑖  ∈  dom  ( ℎ ‘ suc  𝑖 )  ↔  suc  𝑖  ∈  suc  dom  ( ℎ ‘ 𝑖 ) ) ) | 
						
							| 106 | 82 105 | bitr4d | ⊢ ( ( ( ℎ ‘ 𝑖 )  ∈  𝑆  ∧  ( ℎ ‘ suc  𝑖 )  ∈  ( 𝐺 ‘ ( ℎ ‘ 𝑖 ) ) )  →  ( 𝑖  ∈  dom  ( ℎ ‘ 𝑖 )  ↔  suc  𝑖  ∈  dom  ( ℎ ‘ suc  𝑖 ) ) ) | 
						
							| 107 | 106 | biimpd | ⊢ ( ( ( ℎ ‘ 𝑖 )  ∈  𝑆  ∧  ( ℎ ‘ suc  𝑖 )  ∈  ( 𝐺 ‘ ( ℎ ‘ 𝑖 ) ) )  →  ( 𝑖  ∈  dom  ( ℎ ‘ 𝑖 )  →  suc  𝑖  ∈  dom  ( ℎ ‘ suc  𝑖 ) ) ) | 
						
							| 108 | 103 | simprd | ⊢ ( ( ( ℎ ‘ 𝑖 )  ∈  𝑆  ∧  ( ℎ ‘ suc  𝑖 )  ∈  ( 𝐺 ‘ ( ℎ ‘ 𝑖 ) ) )  →  ( ( ℎ ‘ suc  𝑖 )  ↾  dom  ( ℎ ‘ 𝑖 ) )  =  ( ℎ ‘ 𝑖 ) ) | 
						
							| 109 |  | resss | ⊢ ( ( ℎ ‘ suc  𝑖 )  ↾  dom  ( ℎ ‘ 𝑖 ) )  ⊆  ( ℎ ‘ suc  𝑖 ) | 
						
							| 110 |  | sseq1 | ⊢ ( ( ( ℎ ‘ suc  𝑖 )  ↾  dom  ( ℎ ‘ 𝑖 ) )  =  ( ℎ ‘ 𝑖 )  →  ( ( ( ℎ ‘ suc  𝑖 )  ↾  dom  ( ℎ ‘ 𝑖 ) )  ⊆  ( ℎ ‘ suc  𝑖 )  ↔  ( ℎ ‘ 𝑖 )  ⊆  ( ℎ ‘ suc  𝑖 ) ) ) | 
						
							| 111 | 109 110 | mpbii | ⊢ ( ( ( ℎ ‘ suc  𝑖 )  ↾  dom  ( ℎ ‘ 𝑖 ) )  =  ( ℎ ‘ 𝑖 )  →  ( ℎ ‘ 𝑖 )  ⊆  ( ℎ ‘ suc  𝑖 ) ) | 
						
							| 112 |  | elsuci | ⊢ ( 𝑗  ∈  suc  𝑖  →  ( 𝑗  ∈  𝑖  ∨  𝑗  =  𝑖 ) ) | 
						
							| 113 |  | pm2.27 | ⊢ ( 𝑗  ∈  𝑖  →  ( ( 𝑗  ∈  𝑖  →  ( ℎ ‘ 𝑗 )  ⊆  ( ℎ ‘ 𝑖 ) )  →  ( ℎ ‘ 𝑗 )  ⊆  ( ℎ ‘ 𝑖 ) ) ) | 
						
							| 114 |  | sstr2 | ⊢ ( ( ℎ ‘ 𝑗 )  ⊆  ( ℎ ‘ 𝑖 )  →  ( ( ℎ ‘ 𝑖 )  ⊆  ( ℎ ‘ suc  𝑖 )  →  ( ℎ ‘ 𝑗 )  ⊆  ( ℎ ‘ suc  𝑖 ) ) ) | 
						
							| 115 | 113 114 | syl6 | ⊢ ( 𝑗  ∈  𝑖  →  ( ( 𝑗  ∈  𝑖  →  ( ℎ ‘ 𝑗 )  ⊆  ( ℎ ‘ 𝑖 ) )  →  ( ( ℎ ‘ 𝑖 )  ⊆  ( ℎ ‘ suc  𝑖 )  →  ( ℎ ‘ 𝑗 )  ⊆  ( ℎ ‘ suc  𝑖 ) ) ) ) | 
						
							| 116 |  | fveq2 | ⊢ ( 𝑗  =  𝑖  →  ( ℎ ‘ 𝑗 )  =  ( ℎ ‘ 𝑖 ) ) | 
						
							| 117 | 116 | sseq1d | ⊢ ( 𝑗  =  𝑖  →  ( ( ℎ ‘ 𝑗 )  ⊆  ( ℎ ‘ suc  𝑖 )  ↔  ( ℎ ‘ 𝑖 )  ⊆  ( ℎ ‘ suc  𝑖 ) ) ) | 
						
							| 118 | 117 | biimprd | ⊢ ( 𝑗  =  𝑖  →  ( ( ℎ ‘ 𝑖 )  ⊆  ( ℎ ‘ suc  𝑖 )  →  ( ℎ ‘ 𝑗 )  ⊆  ( ℎ ‘ suc  𝑖 ) ) ) | 
						
							| 119 | 118 | a1d | ⊢ ( 𝑗  =  𝑖  →  ( ( 𝑗  ∈  𝑖  →  ( ℎ ‘ 𝑗 )  ⊆  ( ℎ ‘ 𝑖 ) )  →  ( ( ℎ ‘ 𝑖 )  ⊆  ( ℎ ‘ suc  𝑖 )  →  ( ℎ ‘ 𝑗 )  ⊆  ( ℎ ‘ suc  𝑖 ) ) ) ) | 
						
							| 120 | 115 119 | jaoi | ⊢ ( ( 𝑗  ∈  𝑖  ∨  𝑗  =  𝑖 )  →  ( ( 𝑗  ∈  𝑖  →  ( ℎ ‘ 𝑗 )  ⊆  ( ℎ ‘ 𝑖 ) )  →  ( ( ℎ ‘ 𝑖 )  ⊆  ( ℎ ‘ suc  𝑖 )  →  ( ℎ ‘ 𝑗 )  ⊆  ( ℎ ‘ suc  𝑖 ) ) ) ) | 
						
							| 121 | 112 120 | syl | ⊢ ( 𝑗  ∈  suc  𝑖  →  ( ( 𝑗  ∈  𝑖  →  ( ℎ ‘ 𝑗 )  ⊆  ( ℎ ‘ 𝑖 ) )  →  ( ( ℎ ‘ 𝑖 )  ⊆  ( ℎ ‘ suc  𝑖 )  →  ( ℎ ‘ 𝑗 )  ⊆  ( ℎ ‘ suc  𝑖 ) ) ) ) | 
						
							| 122 | 121 | com13 | ⊢ ( ( ℎ ‘ 𝑖 )  ⊆  ( ℎ ‘ suc  𝑖 )  →  ( ( 𝑗  ∈  𝑖  →  ( ℎ ‘ 𝑗 )  ⊆  ( ℎ ‘ 𝑖 ) )  →  ( 𝑗  ∈  suc  𝑖  →  ( ℎ ‘ 𝑗 )  ⊆  ( ℎ ‘ suc  𝑖 ) ) ) ) | 
						
							| 123 | 108 111 122 | 3syl | ⊢ ( ( ( ℎ ‘ 𝑖 )  ∈  𝑆  ∧  ( ℎ ‘ suc  𝑖 )  ∈  ( 𝐺 ‘ ( ℎ ‘ 𝑖 ) ) )  →  ( ( 𝑗  ∈  𝑖  →  ( ℎ ‘ 𝑗 )  ⊆  ( ℎ ‘ 𝑖 ) )  →  ( 𝑗  ∈  suc  𝑖  →  ( ℎ ‘ 𝑗 )  ⊆  ( ℎ ‘ suc  𝑖 ) ) ) ) | 
						
							| 124 | 107 123 | anim12d | ⊢ ( ( ( ℎ ‘ 𝑖 )  ∈  𝑆  ∧  ( ℎ ‘ suc  𝑖 )  ∈  ( 𝐺 ‘ ( ℎ ‘ 𝑖 ) ) )  →  ( ( 𝑖  ∈  dom  ( ℎ ‘ 𝑖 )  ∧  ( 𝑗  ∈  𝑖  →  ( ℎ ‘ 𝑗 )  ⊆  ( ℎ ‘ 𝑖 ) ) )  →  ( suc  𝑖  ∈  dom  ( ℎ ‘ suc  𝑖 )  ∧  ( 𝑗  ∈  suc  𝑖  →  ( ℎ ‘ 𝑗 )  ⊆  ( ℎ ‘ suc  𝑖 ) ) ) ) ) | 
						
							| 125 | 63 69 124 | syl2anc | ⊢ ( ( 𝑖  ∈  ω  ∧  ( ℎ : ω ⟶ 𝑆  ∧  ∀ 𝑘  ∈  ω ( ℎ ‘ suc  𝑘 )  ∈  ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) )  →  ( ( 𝑖  ∈  dom  ( ℎ ‘ 𝑖 )  ∧  ( 𝑗  ∈  𝑖  →  ( ℎ ‘ 𝑗 )  ⊆  ( ℎ ‘ 𝑖 ) ) )  →  ( suc  𝑖  ∈  dom  ( ℎ ‘ suc  𝑖 )  ∧  ( 𝑗  ∈  suc  𝑖  →  ( ℎ ‘ 𝑗 )  ⊆  ( ℎ ‘ suc  𝑖 ) ) ) ) ) | 
						
							| 126 | 125 | ex | ⊢ ( 𝑖  ∈  ω  →  ( ( ℎ : ω ⟶ 𝑆  ∧  ∀ 𝑘  ∈  ω ( ℎ ‘ suc  𝑘 )  ∈  ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) )  →  ( ( 𝑖  ∈  dom  ( ℎ ‘ 𝑖 )  ∧  ( 𝑗  ∈  𝑖  →  ( ℎ ‘ 𝑗 )  ⊆  ( ℎ ‘ 𝑖 ) ) )  →  ( suc  𝑖  ∈  dom  ( ℎ ‘ suc  𝑖 )  ∧  ( 𝑗  ∈  suc  𝑖  →  ( ℎ ‘ 𝑗 )  ⊆  ( ℎ ‘ suc  𝑖 ) ) ) ) ) ) | 
						
							| 127 | 11 19 27 60 126 | finds2 | ⊢ ( 𝑚  ∈  ω  →  ( ( ℎ : ω ⟶ 𝑆  ∧  ∀ 𝑘  ∈  ω ( ℎ ‘ suc  𝑘 )  ∈  ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) )  →  ( 𝑚  ∈  dom  ( ℎ ‘ 𝑚 )  ∧  ( 𝑗  ∈  𝑚  →  ( ℎ ‘ 𝑗 )  ⊆  ( ℎ ‘ 𝑚 ) ) ) ) ) | 
						
							| 128 | 127 | imp | ⊢ ( ( 𝑚  ∈  ω  ∧  ( ℎ : ω ⟶ 𝑆  ∧  ∀ 𝑘  ∈  ω ( ℎ ‘ suc  𝑘 )  ∈  ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) )  →  ( 𝑚  ∈  dom  ( ℎ ‘ 𝑚 )  ∧  ( 𝑗  ∈  𝑚  →  ( ℎ ‘ 𝑗 )  ⊆  ( ℎ ‘ 𝑚 ) ) ) ) | 
						
							| 129 | 128 | simprd | ⊢ ( ( 𝑚  ∈  ω  ∧  ( ℎ : ω ⟶ 𝑆  ∧  ∀ 𝑘  ∈  ω ( ℎ ‘ suc  𝑘 )  ∈  ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) )  →  ( 𝑗  ∈  𝑚  →  ( ℎ ‘ 𝑗 )  ⊆  ( ℎ ‘ 𝑚 ) ) ) | 
						
							| 130 | 129 | expcom | ⊢ ( ( ℎ : ω ⟶ 𝑆  ∧  ∀ 𝑘  ∈  ω ( ℎ ‘ suc  𝑘 )  ∈  ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) )  →  ( 𝑚  ∈  ω  →  ( 𝑗  ∈  𝑚  →  ( ℎ ‘ 𝑗 )  ⊆  ( ℎ ‘ 𝑚 ) ) ) ) | 
						
							| 131 | 130 | ralrimdv | ⊢ ( ( ℎ : ω ⟶ 𝑆  ∧  ∀ 𝑘  ∈  ω ( ℎ ‘ suc  𝑘 )  ∈  ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) )  →  ( 𝑚  ∈  ω  →  ∀ 𝑗  ∈  𝑚 ( ℎ ‘ 𝑗 )  ⊆  ( ℎ ‘ 𝑚 ) ) ) | 
						
							| 132 | 131 | ralrimiv | ⊢ ( ( ℎ : ω ⟶ 𝑆  ∧  ∀ 𝑘  ∈  ω ( ℎ ‘ suc  𝑘 )  ∈  ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) )  →  ∀ 𝑚  ∈  ω ∀ 𝑗  ∈  𝑚 ( ℎ ‘ 𝑗 )  ⊆  ( ℎ ‘ 𝑚 ) ) | 
						
							| 133 |  | frn | ⊢ ( ℎ : ω ⟶ 𝑆  →  ran  ℎ  ⊆  𝑆 ) | 
						
							| 134 |  | ffun | ⊢ ( 𝑠 : suc  𝑛 ⟶ 𝐴  →  Fun  𝑠 ) | 
						
							| 135 | 134 | 3ad2ant1 | ⊢ ( ( 𝑠 : suc  𝑛 ⟶ 𝐴  ∧  ( 𝑠 ‘ ∅ )  =  𝐶  ∧  ∀ 𝑘  ∈  𝑛 ( 𝑠 ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( 𝑠 ‘ 𝑘 ) ) )  →  Fun  𝑠 ) | 
						
							| 136 | 135 | rexlimivw | ⊢ ( ∃ 𝑛  ∈  ω ( 𝑠 : suc  𝑛 ⟶ 𝐴  ∧  ( 𝑠 ‘ ∅ )  =  𝐶  ∧  ∀ 𝑘  ∈  𝑛 ( 𝑠 ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( 𝑠 ‘ 𝑘 ) ) )  →  Fun  𝑠 ) | 
						
							| 137 | 136 | ss2abi | ⊢ { 𝑠  ∣  ∃ 𝑛  ∈  ω ( 𝑠 : suc  𝑛 ⟶ 𝐴  ∧  ( 𝑠 ‘ ∅ )  =  𝐶  ∧  ∀ 𝑘  ∈  𝑛 ( 𝑠 ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( 𝑠 ‘ 𝑘 ) ) ) }  ⊆  { 𝑠  ∣  Fun  𝑠 } | 
						
							| 138 | 2 137 | eqsstri | ⊢ 𝑆  ⊆  { 𝑠  ∣  Fun  𝑠 } | 
						
							| 139 | 133 138 | sstrdi | ⊢ ( ℎ : ω ⟶ 𝑆  →  ran  ℎ  ⊆  { 𝑠  ∣  Fun  𝑠 } ) | 
						
							| 140 | 139 | sseld | ⊢ ( ℎ : ω ⟶ 𝑆  →  ( 𝑢  ∈  ran  ℎ  →  𝑢  ∈  { 𝑠  ∣  Fun  𝑠 } ) ) | 
						
							| 141 |  | vex | ⊢ 𝑢  ∈  V | 
						
							| 142 |  | funeq | ⊢ ( 𝑠  =  𝑢  →  ( Fun  𝑠  ↔  Fun  𝑢 ) ) | 
						
							| 143 | 141 142 | elab | ⊢ ( 𝑢  ∈  { 𝑠  ∣  Fun  𝑠 }  ↔  Fun  𝑢 ) | 
						
							| 144 | 140 143 | imbitrdi | ⊢ ( ℎ : ω ⟶ 𝑆  →  ( 𝑢  ∈  ran  ℎ  →  Fun  𝑢 ) ) | 
						
							| 145 | 144 | adantr | ⊢ ( ( ℎ : ω ⟶ 𝑆  ∧  ∀ 𝑚  ∈  ω ∀ 𝑗  ∈  𝑚 ( ℎ ‘ 𝑗 )  ⊆  ( ℎ ‘ 𝑚 ) )  →  ( 𝑢  ∈  ran  ℎ  →  Fun  𝑢 ) ) | 
						
							| 146 |  | ffn | ⊢ ( ℎ : ω ⟶ 𝑆  →  ℎ  Fn  ω ) | 
						
							| 147 |  | fvelrnb | ⊢ ( ℎ  Fn  ω  →  ( 𝑣  ∈  ran  ℎ  ↔  ∃ 𝑏  ∈  ω ( ℎ ‘ 𝑏 )  =  𝑣 ) ) | 
						
							| 148 |  | fvelrnb | ⊢ ( ℎ  Fn  ω  →  ( 𝑢  ∈  ran  ℎ  ↔  ∃ 𝑎  ∈  ω ( ℎ ‘ 𝑎 )  =  𝑢 ) ) | 
						
							| 149 |  | nnord | ⊢ ( 𝑎  ∈  ω  →  Ord  𝑎 ) | 
						
							| 150 |  | nnord | ⊢ ( 𝑏  ∈  ω  →  Ord  𝑏 ) | 
						
							| 151 | 149 150 | anim12i | ⊢ ( ( 𝑎  ∈  ω  ∧  𝑏  ∈  ω )  →  ( Ord  𝑎  ∧  Ord  𝑏 ) ) | 
						
							| 152 |  | ordtri3or | ⊢ ( ( Ord  𝑎  ∧  Ord  𝑏 )  →  ( 𝑎  ∈  𝑏  ∨  𝑎  =  𝑏  ∨  𝑏  ∈  𝑎 ) ) | 
						
							| 153 |  | fveq2 | ⊢ ( 𝑚  =  𝑏  →  ( ℎ ‘ 𝑚 )  =  ( ℎ ‘ 𝑏 ) ) | 
						
							| 154 | 153 | sseq2d | ⊢ ( 𝑚  =  𝑏  →  ( ( ℎ ‘ 𝑗 )  ⊆  ( ℎ ‘ 𝑚 )  ↔  ( ℎ ‘ 𝑗 )  ⊆  ( ℎ ‘ 𝑏 ) ) ) | 
						
							| 155 | 154 | raleqbi1dv | ⊢ ( 𝑚  =  𝑏  →  ( ∀ 𝑗  ∈  𝑚 ( ℎ ‘ 𝑗 )  ⊆  ( ℎ ‘ 𝑚 )  ↔  ∀ 𝑗  ∈  𝑏 ( ℎ ‘ 𝑗 )  ⊆  ( ℎ ‘ 𝑏 ) ) ) | 
						
							| 156 | 155 | rspcv | ⊢ ( 𝑏  ∈  ω  →  ( ∀ 𝑚  ∈  ω ∀ 𝑗  ∈  𝑚 ( ℎ ‘ 𝑗 )  ⊆  ( ℎ ‘ 𝑚 )  →  ∀ 𝑗  ∈  𝑏 ( ℎ ‘ 𝑗 )  ⊆  ( ℎ ‘ 𝑏 ) ) ) | 
						
							| 157 |  | fveq2 | ⊢ ( 𝑗  =  𝑎  →  ( ℎ ‘ 𝑗 )  =  ( ℎ ‘ 𝑎 ) ) | 
						
							| 158 | 157 | sseq1d | ⊢ ( 𝑗  =  𝑎  →  ( ( ℎ ‘ 𝑗 )  ⊆  ( ℎ ‘ 𝑏 )  ↔  ( ℎ ‘ 𝑎 )  ⊆  ( ℎ ‘ 𝑏 ) ) ) | 
						
							| 159 | 158 | rspccv | ⊢ ( ∀ 𝑗  ∈  𝑏 ( ℎ ‘ 𝑗 )  ⊆  ( ℎ ‘ 𝑏 )  →  ( 𝑎  ∈  𝑏  →  ( ℎ ‘ 𝑎 )  ⊆  ( ℎ ‘ 𝑏 ) ) ) | 
						
							| 160 | 156 159 | syl6 | ⊢ ( 𝑏  ∈  ω  →  ( ∀ 𝑚  ∈  ω ∀ 𝑗  ∈  𝑚 ( ℎ ‘ 𝑗 )  ⊆  ( ℎ ‘ 𝑚 )  →  ( 𝑎  ∈  𝑏  →  ( ℎ ‘ 𝑎 )  ⊆  ( ℎ ‘ 𝑏 ) ) ) ) | 
						
							| 161 | 160 | adantl | ⊢ ( ( 𝑎  ∈  ω  ∧  𝑏  ∈  ω )  →  ( ∀ 𝑚  ∈  ω ∀ 𝑗  ∈  𝑚 ( ℎ ‘ 𝑗 )  ⊆  ( ℎ ‘ 𝑚 )  →  ( 𝑎  ∈  𝑏  →  ( ℎ ‘ 𝑎 )  ⊆  ( ℎ ‘ 𝑏 ) ) ) ) | 
						
							| 162 | 161 | 3imp | ⊢ ( ( ( 𝑎  ∈  ω  ∧  𝑏  ∈  ω )  ∧  ∀ 𝑚  ∈  ω ∀ 𝑗  ∈  𝑚 ( ℎ ‘ 𝑗 )  ⊆  ( ℎ ‘ 𝑚 )  ∧  𝑎  ∈  𝑏 )  →  ( ℎ ‘ 𝑎 )  ⊆  ( ℎ ‘ 𝑏 ) ) | 
						
							| 163 | 162 | orcd | ⊢ ( ( ( 𝑎  ∈  ω  ∧  𝑏  ∈  ω )  ∧  ∀ 𝑚  ∈  ω ∀ 𝑗  ∈  𝑚 ( ℎ ‘ 𝑗 )  ⊆  ( ℎ ‘ 𝑚 )  ∧  𝑎  ∈  𝑏 )  →  ( ( ℎ ‘ 𝑎 )  ⊆  ( ℎ ‘ 𝑏 )  ∨  ( ℎ ‘ 𝑏 )  ⊆  ( ℎ ‘ 𝑎 ) ) ) | 
						
							| 164 | 163 | 3exp | ⊢ ( ( 𝑎  ∈  ω  ∧  𝑏  ∈  ω )  →  ( ∀ 𝑚  ∈  ω ∀ 𝑗  ∈  𝑚 ( ℎ ‘ 𝑗 )  ⊆  ( ℎ ‘ 𝑚 )  →  ( 𝑎  ∈  𝑏  →  ( ( ℎ ‘ 𝑎 )  ⊆  ( ℎ ‘ 𝑏 )  ∨  ( ℎ ‘ 𝑏 )  ⊆  ( ℎ ‘ 𝑎 ) ) ) ) ) | 
						
							| 165 | 164 | com3r | ⊢ ( 𝑎  ∈  𝑏  →  ( ( 𝑎  ∈  ω  ∧  𝑏  ∈  ω )  →  ( ∀ 𝑚  ∈  ω ∀ 𝑗  ∈  𝑚 ( ℎ ‘ 𝑗 )  ⊆  ( ℎ ‘ 𝑚 )  →  ( ( ℎ ‘ 𝑎 )  ⊆  ( ℎ ‘ 𝑏 )  ∨  ( ℎ ‘ 𝑏 )  ⊆  ( ℎ ‘ 𝑎 ) ) ) ) ) | 
						
							| 166 |  | fveq2 | ⊢ ( 𝑎  =  𝑏  →  ( ℎ ‘ 𝑎 )  =  ( ℎ ‘ 𝑏 ) ) | 
						
							| 167 |  | eqimss | ⊢ ( ( ℎ ‘ 𝑎 )  =  ( ℎ ‘ 𝑏 )  →  ( ℎ ‘ 𝑎 )  ⊆  ( ℎ ‘ 𝑏 ) ) | 
						
							| 168 | 167 | orcd | ⊢ ( ( ℎ ‘ 𝑎 )  =  ( ℎ ‘ 𝑏 )  →  ( ( ℎ ‘ 𝑎 )  ⊆  ( ℎ ‘ 𝑏 )  ∨  ( ℎ ‘ 𝑏 )  ⊆  ( ℎ ‘ 𝑎 ) ) ) | 
						
							| 169 | 166 168 | syl | ⊢ ( 𝑎  =  𝑏  →  ( ( ℎ ‘ 𝑎 )  ⊆  ( ℎ ‘ 𝑏 )  ∨  ( ℎ ‘ 𝑏 )  ⊆  ( ℎ ‘ 𝑎 ) ) ) | 
						
							| 170 | 169 | 2a1d | ⊢ ( 𝑎  =  𝑏  →  ( ( 𝑎  ∈  ω  ∧  𝑏  ∈  ω )  →  ( ∀ 𝑚  ∈  ω ∀ 𝑗  ∈  𝑚 ( ℎ ‘ 𝑗 )  ⊆  ( ℎ ‘ 𝑚 )  →  ( ( ℎ ‘ 𝑎 )  ⊆  ( ℎ ‘ 𝑏 )  ∨  ( ℎ ‘ 𝑏 )  ⊆  ( ℎ ‘ 𝑎 ) ) ) ) ) | 
						
							| 171 |  | fveq2 | ⊢ ( 𝑚  =  𝑎  →  ( ℎ ‘ 𝑚 )  =  ( ℎ ‘ 𝑎 ) ) | 
						
							| 172 | 171 | sseq2d | ⊢ ( 𝑚  =  𝑎  →  ( ( ℎ ‘ 𝑗 )  ⊆  ( ℎ ‘ 𝑚 )  ↔  ( ℎ ‘ 𝑗 )  ⊆  ( ℎ ‘ 𝑎 ) ) ) | 
						
							| 173 | 172 | raleqbi1dv | ⊢ ( 𝑚  =  𝑎  →  ( ∀ 𝑗  ∈  𝑚 ( ℎ ‘ 𝑗 )  ⊆  ( ℎ ‘ 𝑚 )  ↔  ∀ 𝑗  ∈  𝑎 ( ℎ ‘ 𝑗 )  ⊆  ( ℎ ‘ 𝑎 ) ) ) | 
						
							| 174 | 173 | rspcv | ⊢ ( 𝑎  ∈  ω  →  ( ∀ 𝑚  ∈  ω ∀ 𝑗  ∈  𝑚 ( ℎ ‘ 𝑗 )  ⊆  ( ℎ ‘ 𝑚 )  →  ∀ 𝑗  ∈  𝑎 ( ℎ ‘ 𝑗 )  ⊆  ( ℎ ‘ 𝑎 ) ) ) | 
						
							| 175 |  | fveq2 | ⊢ ( 𝑗  =  𝑏  →  ( ℎ ‘ 𝑗 )  =  ( ℎ ‘ 𝑏 ) ) | 
						
							| 176 | 175 | sseq1d | ⊢ ( 𝑗  =  𝑏  →  ( ( ℎ ‘ 𝑗 )  ⊆  ( ℎ ‘ 𝑎 )  ↔  ( ℎ ‘ 𝑏 )  ⊆  ( ℎ ‘ 𝑎 ) ) ) | 
						
							| 177 | 176 | rspccv | ⊢ ( ∀ 𝑗  ∈  𝑎 ( ℎ ‘ 𝑗 )  ⊆  ( ℎ ‘ 𝑎 )  →  ( 𝑏  ∈  𝑎  →  ( ℎ ‘ 𝑏 )  ⊆  ( ℎ ‘ 𝑎 ) ) ) | 
						
							| 178 | 174 177 | syl6 | ⊢ ( 𝑎  ∈  ω  →  ( ∀ 𝑚  ∈  ω ∀ 𝑗  ∈  𝑚 ( ℎ ‘ 𝑗 )  ⊆  ( ℎ ‘ 𝑚 )  →  ( 𝑏  ∈  𝑎  →  ( ℎ ‘ 𝑏 )  ⊆  ( ℎ ‘ 𝑎 ) ) ) ) | 
						
							| 179 | 178 | adantr | ⊢ ( ( 𝑎  ∈  ω  ∧  𝑏  ∈  ω )  →  ( ∀ 𝑚  ∈  ω ∀ 𝑗  ∈  𝑚 ( ℎ ‘ 𝑗 )  ⊆  ( ℎ ‘ 𝑚 )  →  ( 𝑏  ∈  𝑎  →  ( ℎ ‘ 𝑏 )  ⊆  ( ℎ ‘ 𝑎 ) ) ) ) | 
						
							| 180 | 179 | 3imp | ⊢ ( ( ( 𝑎  ∈  ω  ∧  𝑏  ∈  ω )  ∧  ∀ 𝑚  ∈  ω ∀ 𝑗  ∈  𝑚 ( ℎ ‘ 𝑗 )  ⊆  ( ℎ ‘ 𝑚 )  ∧  𝑏  ∈  𝑎 )  →  ( ℎ ‘ 𝑏 )  ⊆  ( ℎ ‘ 𝑎 ) ) | 
						
							| 181 | 180 | olcd | ⊢ ( ( ( 𝑎  ∈  ω  ∧  𝑏  ∈  ω )  ∧  ∀ 𝑚  ∈  ω ∀ 𝑗  ∈  𝑚 ( ℎ ‘ 𝑗 )  ⊆  ( ℎ ‘ 𝑚 )  ∧  𝑏  ∈  𝑎 )  →  ( ( ℎ ‘ 𝑎 )  ⊆  ( ℎ ‘ 𝑏 )  ∨  ( ℎ ‘ 𝑏 )  ⊆  ( ℎ ‘ 𝑎 ) ) ) | 
						
							| 182 | 181 | 3exp | ⊢ ( ( 𝑎  ∈  ω  ∧  𝑏  ∈  ω )  →  ( ∀ 𝑚  ∈  ω ∀ 𝑗  ∈  𝑚 ( ℎ ‘ 𝑗 )  ⊆  ( ℎ ‘ 𝑚 )  →  ( 𝑏  ∈  𝑎  →  ( ( ℎ ‘ 𝑎 )  ⊆  ( ℎ ‘ 𝑏 )  ∨  ( ℎ ‘ 𝑏 )  ⊆  ( ℎ ‘ 𝑎 ) ) ) ) ) | 
						
							| 183 | 182 | com3r | ⊢ ( 𝑏  ∈  𝑎  →  ( ( 𝑎  ∈  ω  ∧  𝑏  ∈  ω )  →  ( ∀ 𝑚  ∈  ω ∀ 𝑗  ∈  𝑚 ( ℎ ‘ 𝑗 )  ⊆  ( ℎ ‘ 𝑚 )  →  ( ( ℎ ‘ 𝑎 )  ⊆  ( ℎ ‘ 𝑏 )  ∨  ( ℎ ‘ 𝑏 )  ⊆  ( ℎ ‘ 𝑎 ) ) ) ) ) | 
						
							| 184 | 165 170 183 | 3jaoi | ⊢ ( ( 𝑎  ∈  𝑏  ∨  𝑎  =  𝑏  ∨  𝑏  ∈  𝑎 )  →  ( ( 𝑎  ∈  ω  ∧  𝑏  ∈  ω )  →  ( ∀ 𝑚  ∈  ω ∀ 𝑗  ∈  𝑚 ( ℎ ‘ 𝑗 )  ⊆  ( ℎ ‘ 𝑚 )  →  ( ( ℎ ‘ 𝑎 )  ⊆  ( ℎ ‘ 𝑏 )  ∨  ( ℎ ‘ 𝑏 )  ⊆  ( ℎ ‘ 𝑎 ) ) ) ) ) | 
						
							| 185 | 152 184 | syl | ⊢ ( ( Ord  𝑎  ∧  Ord  𝑏 )  →  ( ( 𝑎  ∈  ω  ∧  𝑏  ∈  ω )  →  ( ∀ 𝑚  ∈  ω ∀ 𝑗  ∈  𝑚 ( ℎ ‘ 𝑗 )  ⊆  ( ℎ ‘ 𝑚 )  →  ( ( ℎ ‘ 𝑎 )  ⊆  ( ℎ ‘ 𝑏 )  ∨  ( ℎ ‘ 𝑏 )  ⊆  ( ℎ ‘ 𝑎 ) ) ) ) ) | 
						
							| 186 | 151 185 | mpcom | ⊢ ( ( 𝑎  ∈  ω  ∧  𝑏  ∈  ω )  →  ( ∀ 𝑚  ∈  ω ∀ 𝑗  ∈  𝑚 ( ℎ ‘ 𝑗 )  ⊆  ( ℎ ‘ 𝑚 )  →  ( ( ℎ ‘ 𝑎 )  ⊆  ( ℎ ‘ 𝑏 )  ∨  ( ℎ ‘ 𝑏 )  ⊆  ( ℎ ‘ 𝑎 ) ) ) ) | 
						
							| 187 |  | sseq12 | ⊢ ( ( ( ℎ ‘ 𝑎 )  =  𝑢  ∧  ( ℎ ‘ 𝑏 )  =  𝑣 )  →  ( ( ℎ ‘ 𝑎 )  ⊆  ( ℎ ‘ 𝑏 )  ↔  𝑢  ⊆  𝑣 ) ) | 
						
							| 188 |  | sseq12 | ⊢ ( ( ( ℎ ‘ 𝑏 )  =  𝑣  ∧  ( ℎ ‘ 𝑎 )  =  𝑢 )  →  ( ( ℎ ‘ 𝑏 )  ⊆  ( ℎ ‘ 𝑎 )  ↔  𝑣  ⊆  𝑢 ) ) | 
						
							| 189 | 188 | ancoms | ⊢ ( ( ( ℎ ‘ 𝑎 )  =  𝑢  ∧  ( ℎ ‘ 𝑏 )  =  𝑣 )  →  ( ( ℎ ‘ 𝑏 )  ⊆  ( ℎ ‘ 𝑎 )  ↔  𝑣  ⊆  𝑢 ) ) | 
						
							| 190 | 187 189 | orbi12d | ⊢ ( ( ( ℎ ‘ 𝑎 )  =  𝑢  ∧  ( ℎ ‘ 𝑏 )  =  𝑣 )  →  ( ( ( ℎ ‘ 𝑎 )  ⊆  ( ℎ ‘ 𝑏 )  ∨  ( ℎ ‘ 𝑏 )  ⊆  ( ℎ ‘ 𝑎 ) )  ↔  ( 𝑢  ⊆  𝑣  ∨  𝑣  ⊆  𝑢 ) ) ) | 
						
							| 191 | 190 | biimpcd | ⊢ ( ( ( ℎ ‘ 𝑎 )  ⊆  ( ℎ ‘ 𝑏 )  ∨  ( ℎ ‘ 𝑏 )  ⊆  ( ℎ ‘ 𝑎 ) )  →  ( ( ( ℎ ‘ 𝑎 )  =  𝑢  ∧  ( ℎ ‘ 𝑏 )  =  𝑣 )  →  ( 𝑢  ⊆  𝑣  ∨  𝑣  ⊆  𝑢 ) ) ) | 
						
							| 192 | 186 191 | syl6 | ⊢ ( ( 𝑎  ∈  ω  ∧  𝑏  ∈  ω )  →  ( ∀ 𝑚  ∈  ω ∀ 𝑗  ∈  𝑚 ( ℎ ‘ 𝑗 )  ⊆  ( ℎ ‘ 𝑚 )  →  ( ( ( ℎ ‘ 𝑎 )  =  𝑢  ∧  ( ℎ ‘ 𝑏 )  =  𝑣 )  →  ( 𝑢  ⊆  𝑣  ∨  𝑣  ⊆  𝑢 ) ) ) ) | 
						
							| 193 | 192 | com23 | ⊢ ( ( 𝑎  ∈  ω  ∧  𝑏  ∈  ω )  →  ( ( ( ℎ ‘ 𝑎 )  =  𝑢  ∧  ( ℎ ‘ 𝑏 )  =  𝑣 )  →  ( ∀ 𝑚  ∈  ω ∀ 𝑗  ∈  𝑚 ( ℎ ‘ 𝑗 )  ⊆  ( ℎ ‘ 𝑚 )  →  ( 𝑢  ⊆  𝑣  ∨  𝑣  ⊆  𝑢 ) ) ) ) | 
						
							| 194 | 193 | exp4b | ⊢ ( 𝑎  ∈  ω  →  ( 𝑏  ∈  ω  →  ( ( ℎ ‘ 𝑎 )  =  𝑢  →  ( ( ℎ ‘ 𝑏 )  =  𝑣  →  ( ∀ 𝑚  ∈  ω ∀ 𝑗  ∈  𝑚 ( ℎ ‘ 𝑗 )  ⊆  ( ℎ ‘ 𝑚 )  →  ( 𝑢  ⊆  𝑣  ∨  𝑣  ⊆  𝑢 ) ) ) ) ) ) | 
						
							| 195 | 194 | com23 | ⊢ ( 𝑎  ∈  ω  →  ( ( ℎ ‘ 𝑎 )  =  𝑢  →  ( 𝑏  ∈  ω  →  ( ( ℎ ‘ 𝑏 )  =  𝑣  →  ( ∀ 𝑚  ∈  ω ∀ 𝑗  ∈  𝑚 ( ℎ ‘ 𝑗 )  ⊆  ( ℎ ‘ 𝑚 )  →  ( 𝑢  ⊆  𝑣  ∨  𝑣  ⊆  𝑢 ) ) ) ) ) ) | 
						
							| 196 | 195 | rexlimiv | ⊢ ( ∃ 𝑎  ∈  ω ( ℎ ‘ 𝑎 )  =  𝑢  →  ( 𝑏  ∈  ω  →  ( ( ℎ ‘ 𝑏 )  =  𝑣  →  ( ∀ 𝑚  ∈  ω ∀ 𝑗  ∈  𝑚 ( ℎ ‘ 𝑗 )  ⊆  ( ℎ ‘ 𝑚 )  →  ( 𝑢  ⊆  𝑣  ∨  𝑣  ⊆  𝑢 ) ) ) ) ) | 
						
							| 197 | 196 | rexlimdv | ⊢ ( ∃ 𝑎  ∈  ω ( ℎ ‘ 𝑎 )  =  𝑢  →  ( ∃ 𝑏  ∈  ω ( ℎ ‘ 𝑏 )  =  𝑣  →  ( ∀ 𝑚  ∈  ω ∀ 𝑗  ∈  𝑚 ( ℎ ‘ 𝑗 )  ⊆  ( ℎ ‘ 𝑚 )  →  ( 𝑢  ⊆  𝑣  ∨  𝑣  ⊆  𝑢 ) ) ) ) | 
						
							| 198 | 148 197 | biimtrdi | ⊢ ( ℎ  Fn  ω  →  ( 𝑢  ∈  ran  ℎ  →  ( ∃ 𝑏  ∈  ω ( ℎ ‘ 𝑏 )  =  𝑣  →  ( ∀ 𝑚  ∈  ω ∀ 𝑗  ∈  𝑚 ( ℎ ‘ 𝑗 )  ⊆  ( ℎ ‘ 𝑚 )  →  ( 𝑢  ⊆  𝑣  ∨  𝑣  ⊆  𝑢 ) ) ) ) ) | 
						
							| 199 | 198 | com23 | ⊢ ( ℎ  Fn  ω  →  ( ∃ 𝑏  ∈  ω ( ℎ ‘ 𝑏 )  =  𝑣  →  ( 𝑢  ∈  ran  ℎ  →  ( ∀ 𝑚  ∈  ω ∀ 𝑗  ∈  𝑚 ( ℎ ‘ 𝑗 )  ⊆  ( ℎ ‘ 𝑚 )  →  ( 𝑢  ⊆  𝑣  ∨  𝑣  ⊆  𝑢 ) ) ) ) ) | 
						
							| 200 | 147 199 | sylbid | ⊢ ( ℎ  Fn  ω  →  ( 𝑣  ∈  ran  ℎ  →  ( 𝑢  ∈  ran  ℎ  →  ( ∀ 𝑚  ∈  ω ∀ 𝑗  ∈  𝑚 ( ℎ ‘ 𝑗 )  ⊆  ( ℎ ‘ 𝑚 )  →  ( 𝑢  ⊆  𝑣  ∨  𝑣  ⊆  𝑢 ) ) ) ) ) | 
						
							| 201 | 200 | com24 | ⊢ ( ℎ  Fn  ω  →  ( ∀ 𝑚  ∈  ω ∀ 𝑗  ∈  𝑚 ( ℎ ‘ 𝑗 )  ⊆  ( ℎ ‘ 𝑚 )  →  ( 𝑢  ∈  ran  ℎ  →  ( 𝑣  ∈  ran  ℎ  →  ( 𝑢  ⊆  𝑣  ∨  𝑣  ⊆  𝑢 ) ) ) ) ) | 
						
							| 202 | 201 | imp | ⊢ ( ( ℎ  Fn  ω  ∧  ∀ 𝑚  ∈  ω ∀ 𝑗  ∈  𝑚 ( ℎ ‘ 𝑗 )  ⊆  ( ℎ ‘ 𝑚 ) )  →  ( 𝑢  ∈  ran  ℎ  →  ( 𝑣  ∈  ran  ℎ  →  ( 𝑢  ⊆  𝑣  ∨  𝑣  ⊆  𝑢 ) ) ) ) | 
						
							| 203 | 202 | ralrimdv | ⊢ ( ( ℎ  Fn  ω  ∧  ∀ 𝑚  ∈  ω ∀ 𝑗  ∈  𝑚 ( ℎ ‘ 𝑗 )  ⊆  ( ℎ ‘ 𝑚 ) )  →  ( 𝑢  ∈  ran  ℎ  →  ∀ 𝑣  ∈  ran  ℎ ( 𝑢  ⊆  𝑣  ∨  𝑣  ⊆  𝑢 ) ) ) | 
						
							| 204 | 146 203 | sylan | ⊢ ( ( ℎ : ω ⟶ 𝑆  ∧  ∀ 𝑚  ∈  ω ∀ 𝑗  ∈  𝑚 ( ℎ ‘ 𝑗 )  ⊆  ( ℎ ‘ 𝑚 ) )  →  ( 𝑢  ∈  ran  ℎ  →  ∀ 𝑣  ∈  ran  ℎ ( 𝑢  ⊆  𝑣  ∨  𝑣  ⊆  𝑢 ) ) ) | 
						
							| 205 | 145 204 | jcad | ⊢ ( ( ℎ : ω ⟶ 𝑆  ∧  ∀ 𝑚  ∈  ω ∀ 𝑗  ∈  𝑚 ( ℎ ‘ 𝑗 )  ⊆  ( ℎ ‘ 𝑚 ) )  →  ( 𝑢  ∈  ran  ℎ  →  ( Fun  𝑢  ∧  ∀ 𝑣  ∈  ran  ℎ ( 𝑢  ⊆  𝑣  ∨  𝑣  ⊆  𝑢 ) ) ) ) | 
						
							| 206 | 205 | ralrimiv | ⊢ ( ( ℎ : ω ⟶ 𝑆  ∧  ∀ 𝑚  ∈  ω ∀ 𝑗  ∈  𝑚 ( ℎ ‘ 𝑗 )  ⊆  ( ℎ ‘ 𝑚 ) )  →  ∀ 𝑢  ∈  ran  ℎ ( Fun  𝑢  ∧  ∀ 𝑣  ∈  ran  ℎ ( 𝑢  ⊆  𝑣  ∨  𝑣  ⊆  𝑢 ) ) ) | 
						
							| 207 |  | fununi | ⊢ ( ∀ 𝑢  ∈  ran  ℎ ( Fun  𝑢  ∧  ∀ 𝑣  ∈  ran  ℎ ( 𝑢  ⊆  𝑣  ∨  𝑣  ⊆  𝑢 ) )  →  Fun  ∪  ran  ℎ ) | 
						
							| 208 | 206 207 | syl | ⊢ ( ( ℎ : ω ⟶ 𝑆  ∧  ∀ 𝑚  ∈  ω ∀ 𝑗  ∈  𝑚 ( ℎ ‘ 𝑗 )  ⊆  ( ℎ ‘ 𝑚 ) )  →  Fun  ∪  ran  ℎ ) | 
						
							| 209 | 132 208 | syldan | ⊢ ( ( ℎ : ω ⟶ 𝑆  ∧  ∀ 𝑘  ∈  ω ( ℎ ‘ suc  𝑘 )  ∈  ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) )  →  Fun  ∪  ran  ℎ ) | 
						
							| 210 |  | vex | ⊢ 𝑚  ∈  V | 
						
							| 211 | 210 | eldm2 | ⊢ ( 𝑚  ∈  dom  ∪  ran  ℎ  ↔  ∃ 𝑢 〈 𝑚 ,  𝑢 〉  ∈  ∪  ran  ℎ ) | 
						
							| 212 |  | eluni2 | ⊢ ( 〈 𝑚 ,  𝑢 〉  ∈  ∪  ran  ℎ  ↔  ∃ 𝑣  ∈  ran  ℎ 〈 𝑚 ,  𝑢 〉  ∈  𝑣 ) | 
						
							| 213 | 210 141 | opeldm | ⊢ ( 〈 𝑚 ,  𝑢 〉  ∈  𝑣  →  𝑚  ∈  dom  𝑣 ) | 
						
							| 214 | 213 | a1i | ⊢ ( ℎ : ω ⟶ 𝑆  →  ( 〈 𝑚 ,  𝑢 〉  ∈  𝑣  →  𝑚  ∈  dom  𝑣 ) ) | 
						
							| 215 | 133 46 | sstrdi | ⊢ ( ℎ : ω ⟶ 𝑆  →  ran  ℎ  ⊆  { 𝑠  ∣  ( ∅  ∈  dom  𝑠  ∧  dom  𝑠  ∈  ω ) } ) | 
						
							| 216 |  | ssel | ⊢ ( ran  ℎ  ⊆  { 𝑠  ∣  ( ∅  ∈  dom  𝑠  ∧  dom  𝑠  ∈  ω ) }  →  ( 𝑣  ∈  ran  ℎ  →  𝑣  ∈  { 𝑠  ∣  ( ∅  ∈  dom  𝑠  ∧  dom  𝑠  ∈  ω ) } ) ) | 
						
							| 217 |  | vex | ⊢ 𝑣  ∈  V | 
						
							| 218 |  | dmeq | ⊢ ( 𝑠  =  𝑣  →  dom  𝑠  =  dom  𝑣 ) | 
						
							| 219 | 218 | eleq2d | ⊢ ( 𝑠  =  𝑣  →  ( ∅  ∈  dom  𝑠  ↔  ∅  ∈  dom  𝑣 ) ) | 
						
							| 220 | 218 | eleq1d | ⊢ ( 𝑠  =  𝑣  →  ( dom  𝑠  ∈  ω  ↔  dom  𝑣  ∈  ω ) ) | 
						
							| 221 | 219 220 | anbi12d | ⊢ ( 𝑠  =  𝑣  →  ( ( ∅  ∈  dom  𝑠  ∧  dom  𝑠  ∈  ω )  ↔  ( ∅  ∈  dom  𝑣  ∧  dom  𝑣  ∈  ω ) ) ) | 
						
							| 222 | 217 221 | elab | ⊢ ( 𝑣  ∈  { 𝑠  ∣  ( ∅  ∈  dom  𝑠  ∧  dom  𝑠  ∈  ω ) }  ↔  ( ∅  ∈  dom  𝑣  ∧  dom  𝑣  ∈  ω ) ) | 
						
							| 223 | 222 | simprbi | ⊢ ( 𝑣  ∈  { 𝑠  ∣  ( ∅  ∈  dom  𝑠  ∧  dom  𝑠  ∈  ω ) }  →  dom  𝑣  ∈  ω ) | 
						
							| 224 | 216 223 | syl6 | ⊢ ( ran  ℎ  ⊆  { 𝑠  ∣  ( ∅  ∈  dom  𝑠  ∧  dom  𝑠  ∈  ω ) }  →  ( 𝑣  ∈  ran  ℎ  →  dom  𝑣  ∈  ω ) ) | 
						
							| 225 | 215 224 | syl | ⊢ ( ℎ : ω ⟶ 𝑆  →  ( 𝑣  ∈  ran  ℎ  →  dom  𝑣  ∈  ω ) ) | 
						
							| 226 | 214 225 | anim12d | ⊢ ( ℎ : ω ⟶ 𝑆  →  ( ( 〈 𝑚 ,  𝑢 〉  ∈  𝑣  ∧  𝑣  ∈  ran  ℎ )  →  ( 𝑚  ∈  dom  𝑣  ∧  dom  𝑣  ∈  ω ) ) ) | 
						
							| 227 |  | elnn | ⊢ ( ( 𝑚  ∈  dom  𝑣  ∧  dom  𝑣  ∈  ω )  →  𝑚  ∈  ω ) | 
						
							| 228 | 226 227 | syl6 | ⊢ ( ℎ : ω ⟶ 𝑆  →  ( ( 〈 𝑚 ,  𝑢 〉  ∈  𝑣  ∧  𝑣  ∈  ran  ℎ )  →  𝑚  ∈  ω ) ) | 
						
							| 229 | 228 | expcomd | ⊢ ( ℎ : ω ⟶ 𝑆  →  ( 𝑣  ∈  ran  ℎ  →  ( 〈 𝑚 ,  𝑢 〉  ∈  𝑣  →  𝑚  ∈  ω ) ) ) | 
						
							| 230 | 229 | rexlimdv | ⊢ ( ℎ : ω ⟶ 𝑆  →  ( ∃ 𝑣  ∈  ran  ℎ 〈 𝑚 ,  𝑢 〉  ∈  𝑣  →  𝑚  ∈  ω ) ) | 
						
							| 231 | 212 230 | biimtrid | ⊢ ( ℎ : ω ⟶ 𝑆  →  ( 〈 𝑚 ,  𝑢 〉  ∈  ∪  ran  ℎ  →  𝑚  ∈  ω ) ) | 
						
							| 232 | 231 | exlimdv | ⊢ ( ℎ : ω ⟶ 𝑆  →  ( ∃ 𝑢 〈 𝑚 ,  𝑢 〉  ∈  ∪  ran  ℎ  →  𝑚  ∈  ω ) ) | 
						
							| 233 | 211 232 | biimtrid | ⊢ ( ℎ : ω ⟶ 𝑆  →  ( 𝑚  ∈  dom  ∪  ran  ℎ  →  𝑚  ∈  ω ) ) | 
						
							| 234 | 233 | adantr | ⊢ ( ( ℎ : ω ⟶ 𝑆  ∧  ∀ 𝑘  ∈  ω ( ℎ ‘ suc  𝑘 )  ∈  ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) )  →  ( 𝑚  ∈  dom  ∪  ran  ℎ  →  𝑚  ∈  ω ) ) | 
						
							| 235 |  | id | ⊢ ( 𝑚  ∈  ω  →  𝑚  ∈  ω ) | 
						
							| 236 |  | fnfvelrn | ⊢ ( ( ℎ  Fn  ω  ∧  𝑚  ∈  ω )  →  ( ℎ ‘ 𝑚 )  ∈  ran  ℎ ) | 
						
							| 237 | 146 235 236 | syl2anr | ⊢ ( ( 𝑚  ∈  ω  ∧  ℎ : ω ⟶ 𝑆 )  →  ( ℎ ‘ 𝑚 )  ∈  ran  ℎ ) | 
						
							| 238 | 237 | adantrr | ⊢ ( ( 𝑚  ∈  ω  ∧  ( ℎ : ω ⟶ 𝑆  ∧  ∀ 𝑘  ∈  ω ( ℎ ‘ suc  𝑘 )  ∈  ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) )  →  ( ℎ ‘ 𝑚 )  ∈  ran  ℎ ) | 
						
							| 239 | 128 | simpld | ⊢ ( ( 𝑚  ∈  ω  ∧  ( ℎ : ω ⟶ 𝑆  ∧  ∀ 𝑘  ∈  ω ( ℎ ‘ suc  𝑘 )  ∈  ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) )  →  𝑚  ∈  dom  ( ℎ ‘ 𝑚 ) ) | 
						
							| 240 |  | dmeq | ⊢ ( 𝑢  =  ( ℎ ‘ 𝑚 )  →  dom  𝑢  =  dom  ( ℎ ‘ 𝑚 ) ) | 
						
							| 241 | 240 | eliuni | ⊢ ( ( ( ℎ ‘ 𝑚 )  ∈  ran  ℎ  ∧  𝑚  ∈  dom  ( ℎ ‘ 𝑚 ) )  →  𝑚  ∈  ∪  𝑢  ∈  ran  ℎ dom  𝑢 ) | 
						
							| 242 | 238 239 241 | syl2anc | ⊢ ( ( 𝑚  ∈  ω  ∧  ( ℎ : ω ⟶ 𝑆  ∧  ∀ 𝑘  ∈  ω ( ℎ ‘ suc  𝑘 )  ∈  ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) )  →  𝑚  ∈  ∪  𝑢  ∈  ran  ℎ dom  𝑢 ) | 
						
							| 243 |  | dmuni | ⊢ dom  ∪  ran  ℎ  =  ∪  𝑢  ∈  ran  ℎ dom  𝑢 | 
						
							| 244 | 242 243 | eleqtrrdi | ⊢ ( ( 𝑚  ∈  ω  ∧  ( ℎ : ω ⟶ 𝑆  ∧  ∀ 𝑘  ∈  ω ( ℎ ‘ suc  𝑘 )  ∈  ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) )  →  𝑚  ∈  dom  ∪  ran  ℎ ) | 
						
							| 245 | 244 | expcom | ⊢ ( ( ℎ : ω ⟶ 𝑆  ∧  ∀ 𝑘  ∈  ω ( ℎ ‘ suc  𝑘 )  ∈  ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) )  →  ( 𝑚  ∈  ω  →  𝑚  ∈  dom  ∪  ran  ℎ ) ) | 
						
							| 246 | 234 245 | impbid | ⊢ ( ( ℎ : ω ⟶ 𝑆  ∧  ∀ 𝑘  ∈  ω ( ℎ ‘ suc  𝑘 )  ∈  ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) )  →  ( 𝑚  ∈  dom  ∪  ran  ℎ  ↔  𝑚  ∈  ω ) ) | 
						
							| 247 | 246 | eqrdv | ⊢ ( ( ℎ : ω ⟶ 𝑆  ∧  ∀ 𝑘  ∈  ω ( ℎ ‘ suc  𝑘 )  ∈  ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) )  →  dom  ∪  ran  ℎ  =  ω ) | 
						
							| 248 |  | rnuni | ⊢ ran  ∪  ran  ℎ  =  ∪  𝑠  ∈  ran  ℎ ran  𝑠 | 
						
							| 249 |  | frn | ⊢ ( 𝑠 : suc  𝑛 ⟶ 𝐴  →  ran  𝑠  ⊆  𝐴 ) | 
						
							| 250 | 249 | 3ad2ant1 | ⊢ ( ( 𝑠 : suc  𝑛 ⟶ 𝐴  ∧  ( 𝑠 ‘ ∅ )  =  𝐶  ∧  ∀ 𝑘  ∈  𝑛 ( 𝑠 ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( 𝑠 ‘ 𝑘 ) ) )  →  ran  𝑠  ⊆  𝐴 ) | 
						
							| 251 | 250 | rexlimivw | ⊢ ( ∃ 𝑛  ∈  ω ( 𝑠 : suc  𝑛 ⟶ 𝐴  ∧  ( 𝑠 ‘ ∅ )  =  𝐶  ∧  ∀ 𝑘  ∈  𝑛 ( 𝑠 ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( 𝑠 ‘ 𝑘 ) ) )  →  ran  𝑠  ⊆  𝐴 ) | 
						
							| 252 | 251 | ss2abi | ⊢ { 𝑠  ∣  ∃ 𝑛  ∈  ω ( 𝑠 : suc  𝑛 ⟶ 𝐴  ∧  ( 𝑠 ‘ ∅ )  =  𝐶  ∧  ∀ 𝑘  ∈  𝑛 ( 𝑠 ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( 𝑠 ‘ 𝑘 ) ) ) }  ⊆  { 𝑠  ∣  ran  𝑠  ⊆  𝐴 } | 
						
							| 253 | 2 252 | eqsstri | ⊢ 𝑆  ⊆  { 𝑠  ∣  ran  𝑠  ⊆  𝐴 } | 
						
							| 254 | 133 253 | sstrdi | ⊢ ( ℎ : ω ⟶ 𝑆  →  ran  ℎ  ⊆  { 𝑠  ∣  ran  𝑠  ⊆  𝐴 } ) | 
						
							| 255 |  | ssel | ⊢ ( ran  ℎ  ⊆  { 𝑠  ∣  ran  𝑠  ⊆  𝐴 }  →  ( 𝑠  ∈  ran  ℎ  →  𝑠  ∈  { 𝑠  ∣  ran  𝑠  ⊆  𝐴 } ) ) | 
						
							| 256 |  | abid | ⊢ ( 𝑠  ∈  { 𝑠  ∣  ran  𝑠  ⊆  𝐴 }  ↔  ran  𝑠  ⊆  𝐴 ) | 
						
							| 257 | 255 256 | imbitrdi | ⊢ ( ran  ℎ  ⊆  { 𝑠  ∣  ran  𝑠  ⊆  𝐴 }  →  ( 𝑠  ∈  ran  ℎ  →  ran  𝑠  ⊆  𝐴 ) ) | 
						
							| 258 | 254 257 | syl | ⊢ ( ℎ : ω ⟶ 𝑆  →  ( 𝑠  ∈  ran  ℎ  →  ran  𝑠  ⊆  𝐴 ) ) | 
						
							| 259 | 258 | ralrimiv | ⊢ ( ℎ : ω ⟶ 𝑆  →  ∀ 𝑠  ∈  ran  ℎ ran  𝑠  ⊆  𝐴 ) | 
						
							| 260 |  | iunss | ⊢ ( ∪  𝑠  ∈  ran  ℎ ran  𝑠  ⊆  𝐴  ↔  ∀ 𝑠  ∈  ran  ℎ ran  𝑠  ⊆  𝐴 ) | 
						
							| 261 | 259 260 | sylibr | ⊢ ( ℎ : ω ⟶ 𝑆  →  ∪  𝑠  ∈  ran  ℎ ran  𝑠  ⊆  𝐴 ) | 
						
							| 262 | 248 261 | eqsstrid | ⊢ ( ℎ : ω ⟶ 𝑆  →  ran  ∪  ran  ℎ  ⊆  𝐴 ) | 
						
							| 263 | 262 | adantr | ⊢ ( ( ℎ : ω ⟶ 𝑆  ∧  ∀ 𝑘  ∈  ω ( ℎ ‘ suc  𝑘 )  ∈  ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) )  →  ran  ∪  ran  ℎ  ⊆  𝐴 ) | 
						
							| 264 |  | df-fn | ⊢ ( ∪  ran  ℎ  Fn  ω  ↔  ( Fun  ∪  ran  ℎ  ∧  dom  ∪  ran  ℎ  =  ω ) ) | 
						
							| 265 |  | df-f | ⊢ ( ∪  ran  ℎ : ω ⟶ 𝐴  ↔  ( ∪  ran  ℎ  Fn  ω  ∧  ran  ∪  ran  ℎ  ⊆  𝐴 ) ) | 
						
							| 266 | 265 | biimpri | ⊢ ( ( ∪  ran  ℎ  Fn  ω  ∧  ran  ∪  ran  ℎ  ⊆  𝐴 )  →  ∪  ran  ℎ : ω ⟶ 𝐴 ) | 
						
							| 267 | 264 266 | sylanbr | ⊢ ( ( ( Fun  ∪  ran  ℎ  ∧  dom  ∪  ran  ℎ  =  ω )  ∧  ran  ∪  ran  ℎ  ⊆  𝐴 )  →  ∪  ran  ℎ : ω ⟶ 𝐴 ) | 
						
							| 268 | 209 247 263 267 | syl21anc | ⊢ ( ( ℎ : ω ⟶ 𝑆  ∧  ∀ 𝑘  ∈  ω ( ℎ ‘ suc  𝑘 )  ∈  ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) )  →  ∪  ran  ℎ : ω ⟶ 𝐴 ) | 
						
							| 269 |  | fnfvelrn | ⊢ ( ( ℎ  Fn  ω  ∧  ∅  ∈  ω )  →  ( ℎ ‘ ∅ )  ∈  ran  ℎ ) | 
						
							| 270 | 146 28 269 | sylancl | ⊢ ( ℎ : ω ⟶ 𝑆  →  ( ℎ ‘ ∅ )  ∈  ran  ℎ ) | 
						
							| 271 | 270 | adantr | ⊢ ( ( ℎ : ω ⟶ 𝑆  ∧  ∀ 𝑘  ∈  ω ( ℎ ‘ suc  𝑘 )  ∈  ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) )  →  ( ℎ ‘ ∅ )  ∈  ran  ℎ ) | 
						
							| 272 |  | elssuni | ⊢ ( ( ℎ ‘ ∅ )  ∈  ran  ℎ  →  ( ℎ ‘ ∅ )  ⊆  ∪  ran  ℎ ) | 
						
							| 273 | 271 272 | syl | ⊢ ( ( ℎ : ω ⟶ 𝑆  ∧  ∀ 𝑘  ∈  ω ( ℎ ‘ suc  𝑘 )  ∈  ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) )  →  ( ℎ ‘ ∅ )  ⊆  ∪  ran  ℎ ) | 
						
							| 274 | 56 | adantr | ⊢ ( ( ℎ : ω ⟶ 𝑆  ∧  ∀ 𝑘  ∈  ω ( ℎ ‘ suc  𝑘 )  ∈  ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) )  →  ∅  ∈  dom  ( ℎ ‘ ∅ ) ) | 
						
							| 275 |  | funssfv | ⊢ ( ( Fun  ∪  ran  ℎ  ∧  ( ℎ ‘ ∅ )  ⊆  ∪  ran  ℎ  ∧  ∅  ∈  dom  ( ℎ ‘ ∅ ) )  →  ( ∪  ran  ℎ ‘ ∅ )  =  ( ( ℎ ‘ ∅ ) ‘ ∅ ) ) | 
						
							| 276 | 209 273 274 275 | syl3anc | ⊢ ( ( ℎ : ω ⟶ 𝑆  ∧  ∀ 𝑘  ∈  ω ( ℎ ‘ suc  𝑘 )  ∈  ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) )  →  ( ∪  ran  ℎ ‘ ∅ )  =  ( ( ℎ ‘ ∅ ) ‘ ∅ ) ) | 
						
							| 277 |  | simp2 | ⊢ ( ( 𝑠 : suc  𝑛 ⟶ 𝐴  ∧  ( 𝑠 ‘ ∅ )  =  𝐶  ∧  ∀ 𝑘  ∈  𝑛 ( 𝑠 ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( 𝑠 ‘ 𝑘 ) ) )  →  ( 𝑠 ‘ ∅ )  =  𝐶 ) | 
						
							| 278 | 277 | rexlimivw | ⊢ ( ∃ 𝑛  ∈  ω ( 𝑠 : suc  𝑛 ⟶ 𝐴  ∧  ( 𝑠 ‘ ∅ )  =  𝐶  ∧  ∀ 𝑘  ∈  𝑛 ( 𝑠 ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( 𝑠 ‘ 𝑘 ) ) )  →  ( 𝑠 ‘ ∅ )  =  𝐶 ) | 
						
							| 279 | 278 | ss2abi | ⊢ { 𝑠  ∣  ∃ 𝑛  ∈  ω ( 𝑠 : suc  𝑛 ⟶ 𝐴  ∧  ( 𝑠 ‘ ∅ )  =  𝐶  ∧  ∀ 𝑘  ∈  𝑛 ( 𝑠 ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( 𝑠 ‘ 𝑘 ) ) ) }  ⊆  { 𝑠  ∣  ( 𝑠 ‘ ∅ )  =  𝐶 } | 
						
							| 280 | 2 279 | eqsstri | ⊢ 𝑆  ⊆  { 𝑠  ∣  ( 𝑠 ‘ ∅ )  =  𝐶 } | 
						
							| 281 | 133 280 | sstrdi | ⊢ ( ℎ : ω ⟶ 𝑆  →  ran  ℎ  ⊆  { 𝑠  ∣  ( 𝑠 ‘ ∅ )  =  𝐶 } ) | 
						
							| 282 |  | ssel | ⊢ ( ran  ℎ  ⊆  { 𝑠  ∣  ( 𝑠 ‘ ∅ )  =  𝐶 }  →  ( ( ℎ ‘ ∅ )  ∈  ran  ℎ  →  ( ℎ ‘ ∅ )  ∈  { 𝑠  ∣  ( 𝑠 ‘ ∅ )  =  𝐶 } ) ) | 
						
							| 283 |  | fveq1 | ⊢ ( 𝑠  =  ( ℎ ‘ ∅ )  →  ( 𝑠 ‘ ∅ )  =  ( ( ℎ ‘ ∅ ) ‘ ∅ ) ) | 
						
							| 284 | 283 | eqeq1d | ⊢ ( 𝑠  =  ( ℎ ‘ ∅ )  →  ( ( 𝑠 ‘ ∅ )  =  𝐶  ↔  ( ( ℎ ‘ ∅ ) ‘ ∅ )  =  𝐶 ) ) | 
						
							| 285 | 48 284 | elab | ⊢ ( ( ℎ ‘ ∅ )  ∈  { 𝑠  ∣  ( 𝑠 ‘ ∅ )  =  𝐶 }  ↔  ( ( ℎ ‘ ∅ ) ‘ ∅ )  =  𝐶 ) | 
						
							| 286 | 282 285 | imbitrdi | ⊢ ( ran  ℎ  ⊆  { 𝑠  ∣  ( 𝑠 ‘ ∅ )  =  𝐶 }  →  ( ( ℎ ‘ ∅ )  ∈  ran  ℎ  →  ( ( ℎ ‘ ∅ ) ‘ ∅ )  =  𝐶 ) ) | 
						
							| 287 | 281 286 | syl | ⊢ ( ℎ : ω ⟶ 𝑆  →  ( ( ℎ ‘ ∅ )  ∈  ran  ℎ  →  ( ( ℎ ‘ ∅ ) ‘ ∅ )  =  𝐶 ) ) | 
						
							| 288 | 287 | adantr | ⊢ ( ( ℎ : ω ⟶ 𝑆  ∧  ∀ 𝑘  ∈  ω ( ℎ ‘ suc  𝑘 )  ∈  ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) )  →  ( ( ℎ ‘ ∅ )  ∈  ran  ℎ  →  ( ( ℎ ‘ ∅ ) ‘ ∅ )  =  𝐶 ) ) | 
						
							| 289 | 271 288 | mpd | ⊢ ( ( ℎ : ω ⟶ 𝑆  ∧  ∀ 𝑘  ∈  ω ( ℎ ‘ suc  𝑘 )  ∈  ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) )  →  ( ( ℎ ‘ ∅ ) ‘ ∅ )  =  𝐶 ) | 
						
							| 290 | 276 289 | eqtrd | ⊢ ( ( ℎ : ω ⟶ 𝑆  ∧  ∀ 𝑘  ∈  ω ( ℎ ‘ suc  𝑘 )  ∈  ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) )  →  ( ∪  ran  ℎ ‘ ∅ )  =  𝐶 ) | 
						
							| 291 |  | nfv | ⊢ Ⅎ 𝑘 ℎ : ω ⟶ 𝑆 | 
						
							| 292 |  | nfra1 | ⊢ Ⅎ 𝑘 ∀ 𝑘  ∈  ω ( ℎ ‘ suc  𝑘 )  ∈  ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) | 
						
							| 293 | 291 292 | nfan | ⊢ Ⅎ 𝑘 ( ℎ : ω ⟶ 𝑆  ∧  ∀ 𝑘  ∈  ω ( ℎ ‘ suc  𝑘 )  ∈  ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) | 
						
							| 294 | 133 | ad2antrr | ⊢ ( ( ( ℎ : ω ⟶ 𝑆  ∧  ∀ 𝑘  ∈  ω ( ℎ ‘ suc  𝑘 )  ∈  ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) )  ∧  𝑘  ∈  ω )  →  ran  ℎ  ⊆  𝑆 ) | 
						
							| 295 |  | peano2 | ⊢ ( 𝑘  ∈  ω  →  suc  𝑘  ∈  ω ) | 
						
							| 296 |  | fnfvelrn | ⊢ ( ( ℎ  Fn  ω  ∧  suc  𝑘  ∈  ω )  →  ( ℎ ‘ suc  𝑘 )  ∈  ran  ℎ ) | 
						
							| 297 | 146 295 296 | syl2an | ⊢ ( ( ℎ : ω ⟶ 𝑆  ∧  𝑘  ∈  ω )  →  ( ℎ ‘ suc  𝑘 )  ∈  ran  ℎ ) | 
						
							| 298 | 297 | adantlr | ⊢ ( ( ( ℎ : ω ⟶ 𝑆  ∧  ∀ 𝑘  ∈  ω ( ℎ ‘ suc  𝑘 )  ∈  ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) )  ∧  𝑘  ∈  ω )  →  ( ℎ ‘ suc  𝑘 )  ∈  ran  ℎ ) | 
						
							| 299 | 239 | expcom | ⊢ ( ( ℎ : ω ⟶ 𝑆  ∧  ∀ 𝑘  ∈  ω ( ℎ ‘ suc  𝑘 )  ∈  ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) )  →  ( 𝑚  ∈  ω  →  𝑚  ∈  dom  ( ℎ ‘ 𝑚 ) ) ) | 
						
							| 300 | 299 | ralrimiv | ⊢ ( ( ℎ : ω ⟶ 𝑆  ∧  ∀ 𝑘  ∈  ω ( ℎ ‘ suc  𝑘 )  ∈  ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) )  →  ∀ 𝑚  ∈  ω 𝑚  ∈  dom  ( ℎ ‘ 𝑚 ) ) | 
						
							| 301 |  | id | ⊢ ( 𝑚  =  suc  𝑘  →  𝑚  =  suc  𝑘 ) | 
						
							| 302 |  | fveq2 | ⊢ ( 𝑚  =  suc  𝑘  →  ( ℎ ‘ 𝑚 )  =  ( ℎ ‘ suc  𝑘 ) ) | 
						
							| 303 | 302 | dmeqd | ⊢ ( 𝑚  =  suc  𝑘  →  dom  ( ℎ ‘ 𝑚 )  =  dom  ( ℎ ‘ suc  𝑘 ) ) | 
						
							| 304 | 301 303 | eleq12d | ⊢ ( 𝑚  =  suc  𝑘  →  ( 𝑚  ∈  dom  ( ℎ ‘ 𝑚 )  ↔  suc  𝑘  ∈  dom  ( ℎ ‘ suc  𝑘 ) ) ) | 
						
							| 305 | 304 | rspcv | ⊢ ( suc  𝑘  ∈  ω  →  ( ∀ 𝑚  ∈  ω 𝑚  ∈  dom  ( ℎ ‘ 𝑚 )  →  suc  𝑘  ∈  dom  ( ℎ ‘ suc  𝑘 ) ) ) | 
						
							| 306 | 295 305 | syl | ⊢ ( 𝑘  ∈  ω  →  ( ∀ 𝑚  ∈  ω 𝑚  ∈  dom  ( ℎ ‘ 𝑚 )  →  suc  𝑘  ∈  dom  ( ℎ ‘ suc  𝑘 ) ) ) | 
						
							| 307 | 300 306 | mpan9 | ⊢ ( ( ( ℎ : ω ⟶ 𝑆  ∧  ∀ 𝑘  ∈  ω ( ℎ ‘ suc  𝑘 )  ∈  ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) )  ∧  𝑘  ∈  ω )  →  suc  𝑘  ∈  dom  ( ℎ ‘ suc  𝑘 ) ) | 
						
							| 308 |  | eleq2 | ⊢ ( dom  𝑠  =  suc  𝑛  →  ( suc  𝑘  ∈  dom  𝑠  ↔  suc  𝑘  ∈  suc  𝑛 ) ) | 
						
							| 309 | 308 | biimpa | ⊢ ( ( dom  𝑠  =  suc  𝑛  ∧  suc  𝑘  ∈  dom  𝑠 )  →  suc  𝑘  ∈  suc  𝑛 ) | 
						
							| 310 | 31 309 | sylan | ⊢ ( ( 𝑠 : suc  𝑛 ⟶ 𝐴  ∧  suc  𝑘  ∈  dom  𝑠 )  →  suc  𝑘  ∈  suc  𝑛 ) | 
						
							| 311 |  | ordsucelsuc | ⊢ ( Ord  𝑛  →  ( 𝑘  ∈  𝑛  ↔  suc  𝑘  ∈  suc  𝑛 ) ) | 
						
							| 312 | 32 311 | syl | ⊢ ( 𝑛  ∈  ω  →  ( 𝑘  ∈  𝑛  ↔  suc  𝑘  ∈  suc  𝑛 ) ) | 
						
							| 313 | 312 | biimprd | ⊢ ( 𝑛  ∈  ω  →  ( suc  𝑘  ∈  suc  𝑛  →  𝑘  ∈  𝑛 ) ) | 
						
							| 314 |  | rsp | ⊢ ( ∀ 𝑘  ∈  𝑛 ( 𝑠 ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( 𝑠 ‘ 𝑘 ) )  →  ( 𝑘  ∈  𝑛  →  ( 𝑠 ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( 𝑠 ‘ 𝑘 ) ) ) ) | 
						
							| 315 | 313 314 | syl9r | ⊢ ( ∀ 𝑘  ∈  𝑛 ( 𝑠 ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( 𝑠 ‘ 𝑘 ) )  →  ( 𝑛  ∈  ω  →  ( suc  𝑘  ∈  suc  𝑛  →  ( 𝑠 ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( 𝑠 ‘ 𝑘 ) ) ) ) ) | 
						
							| 316 | 315 | com13 | ⊢ ( suc  𝑘  ∈  suc  𝑛  →  ( 𝑛  ∈  ω  →  ( ∀ 𝑘  ∈  𝑛 ( 𝑠 ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( 𝑠 ‘ 𝑘 ) )  →  ( 𝑠 ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( 𝑠 ‘ 𝑘 ) ) ) ) ) | 
						
							| 317 | 310 316 | syl | ⊢ ( ( 𝑠 : suc  𝑛 ⟶ 𝐴  ∧  suc  𝑘  ∈  dom  𝑠 )  →  ( 𝑛  ∈  ω  →  ( ∀ 𝑘  ∈  𝑛 ( 𝑠 ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( 𝑠 ‘ 𝑘 ) )  →  ( 𝑠 ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( 𝑠 ‘ 𝑘 ) ) ) ) ) | 
						
							| 318 | 317 | ex | ⊢ ( 𝑠 : suc  𝑛 ⟶ 𝐴  →  ( suc  𝑘  ∈  dom  𝑠  →  ( 𝑛  ∈  ω  →  ( ∀ 𝑘  ∈  𝑛 ( 𝑠 ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( 𝑠 ‘ 𝑘 ) )  →  ( 𝑠 ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( 𝑠 ‘ 𝑘 ) ) ) ) ) ) | 
						
							| 319 | 318 | com24 | ⊢ ( 𝑠 : suc  𝑛 ⟶ 𝐴  →  ( ∀ 𝑘  ∈  𝑛 ( 𝑠 ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( 𝑠 ‘ 𝑘 ) )  →  ( 𝑛  ∈  ω  →  ( suc  𝑘  ∈  dom  𝑠  →  ( 𝑠 ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( 𝑠 ‘ 𝑘 ) ) ) ) ) ) | 
						
							| 320 | 319 | imp | ⊢ ( ( 𝑠 : suc  𝑛 ⟶ 𝐴  ∧  ∀ 𝑘  ∈  𝑛 ( 𝑠 ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( 𝑠 ‘ 𝑘 ) ) )  →  ( 𝑛  ∈  ω  →  ( suc  𝑘  ∈  dom  𝑠  →  ( 𝑠 ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( 𝑠 ‘ 𝑘 ) ) ) ) ) | 
						
							| 321 | 320 | 3adant2 | ⊢ ( ( 𝑠 : suc  𝑛 ⟶ 𝐴  ∧  ( 𝑠 ‘ ∅ )  =  𝐶  ∧  ∀ 𝑘  ∈  𝑛 ( 𝑠 ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( 𝑠 ‘ 𝑘 ) ) )  →  ( 𝑛  ∈  ω  →  ( suc  𝑘  ∈  dom  𝑠  →  ( 𝑠 ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( 𝑠 ‘ 𝑘 ) ) ) ) ) | 
						
							| 322 | 321 | impcom | ⊢ ( ( 𝑛  ∈  ω  ∧  ( 𝑠 : suc  𝑛 ⟶ 𝐴  ∧  ( 𝑠 ‘ ∅ )  =  𝐶  ∧  ∀ 𝑘  ∈  𝑛 ( 𝑠 ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( 𝑠 ‘ 𝑘 ) ) ) )  →  ( suc  𝑘  ∈  dom  𝑠  →  ( 𝑠 ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( 𝑠 ‘ 𝑘 ) ) ) ) | 
						
							| 323 | 322 | rexlimiva | ⊢ ( ∃ 𝑛  ∈  ω ( 𝑠 : suc  𝑛 ⟶ 𝐴  ∧  ( 𝑠 ‘ ∅ )  =  𝐶  ∧  ∀ 𝑘  ∈  𝑛 ( 𝑠 ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( 𝑠 ‘ 𝑘 ) ) )  →  ( suc  𝑘  ∈  dom  𝑠  →  ( 𝑠 ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( 𝑠 ‘ 𝑘 ) ) ) ) | 
						
							| 324 | 323 | ss2abi | ⊢ { 𝑠  ∣  ∃ 𝑛  ∈  ω ( 𝑠 : suc  𝑛 ⟶ 𝐴  ∧  ( 𝑠 ‘ ∅ )  =  𝐶  ∧  ∀ 𝑘  ∈  𝑛 ( 𝑠 ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( 𝑠 ‘ 𝑘 ) ) ) }  ⊆  { 𝑠  ∣  ( suc  𝑘  ∈  dom  𝑠  →  ( 𝑠 ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( 𝑠 ‘ 𝑘 ) ) ) } | 
						
							| 325 | 2 324 | eqsstri | ⊢ 𝑆  ⊆  { 𝑠  ∣  ( suc  𝑘  ∈  dom  𝑠  →  ( 𝑠 ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( 𝑠 ‘ 𝑘 ) ) ) } | 
						
							| 326 |  | sstr | ⊢ ( ( ran  ℎ  ⊆  𝑆  ∧  𝑆  ⊆  { 𝑠  ∣  ( suc  𝑘  ∈  dom  𝑠  →  ( 𝑠 ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( 𝑠 ‘ 𝑘 ) ) ) } )  →  ran  ℎ  ⊆  { 𝑠  ∣  ( suc  𝑘  ∈  dom  𝑠  →  ( 𝑠 ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( 𝑠 ‘ 𝑘 ) ) ) } ) | 
						
							| 327 | 325 326 | mpan2 | ⊢ ( ran  ℎ  ⊆  𝑆  →  ran  ℎ  ⊆  { 𝑠  ∣  ( suc  𝑘  ∈  dom  𝑠  →  ( 𝑠 ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( 𝑠 ‘ 𝑘 ) ) ) } ) | 
						
							| 328 | 327 | sseld | ⊢ ( ran  ℎ  ⊆  𝑆  →  ( ( ℎ ‘ suc  𝑘 )  ∈  ran  ℎ  →  ( ℎ ‘ suc  𝑘 )  ∈  { 𝑠  ∣  ( suc  𝑘  ∈  dom  𝑠  →  ( 𝑠 ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( 𝑠 ‘ 𝑘 ) ) ) } ) ) | 
						
							| 329 |  | fvex | ⊢ ( ℎ ‘ suc  𝑘 )  ∈  V | 
						
							| 330 |  | dmeq | ⊢ ( 𝑠  =  ( ℎ ‘ suc  𝑘 )  →  dom  𝑠  =  dom  ( ℎ ‘ suc  𝑘 ) ) | 
						
							| 331 | 330 | eleq2d | ⊢ ( 𝑠  =  ( ℎ ‘ suc  𝑘 )  →  ( suc  𝑘  ∈  dom  𝑠  ↔  suc  𝑘  ∈  dom  ( ℎ ‘ suc  𝑘 ) ) ) | 
						
							| 332 |  | fveq1 | ⊢ ( 𝑠  =  ( ℎ ‘ suc  𝑘 )  →  ( 𝑠 ‘ suc  𝑘 )  =  ( ( ℎ ‘ suc  𝑘 ) ‘ suc  𝑘 ) ) | 
						
							| 333 |  | fveq1 | ⊢ ( 𝑠  =  ( ℎ ‘ suc  𝑘 )  →  ( 𝑠 ‘ 𝑘 )  =  ( ( ℎ ‘ suc  𝑘 ) ‘ 𝑘 ) ) | 
						
							| 334 | 333 | fveq2d | ⊢ ( 𝑠  =  ( ℎ ‘ suc  𝑘 )  →  ( 𝐹 ‘ ( 𝑠 ‘ 𝑘 ) )  =  ( 𝐹 ‘ ( ( ℎ ‘ suc  𝑘 ) ‘ 𝑘 ) ) ) | 
						
							| 335 | 332 334 | eleq12d | ⊢ ( 𝑠  =  ( ℎ ‘ suc  𝑘 )  →  ( ( 𝑠 ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( 𝑠 ‘ 𝑘 ) )  ↔  ( ( ℎ ‘ suc  𝑘 ) ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( ( ℎ ‘ suc  𝑘 ) ‘ 𝑘 ) ) ) ) | 
						
							| 336 | 331 335 | imbi12d | ⊢ ( 𝑠  =  ( ℎ ‘ suc  𝑘 )  →  ( ( suc  𝑘  ∈  dom  𝑠  →  ( 𝑠 ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( 𝑠 ‘ 𝑘 ) ) )  ↔  ( suc  𝑘  ∈  dom  ( ℎ ‘ suc  𝑘 )  →  ( ( ℎ ‘ suc  𝑘 ) ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( ( ℎ ‘ suc  𝑘 ) ‘ 𝑘 ) ) ) ) ) | 
						
							| 337 | 329 336 | elab | ⊢ ( ( ℎ ‘ suc  𝑘 )  ∈  { 𝑠  ∣  ( suc  𝑘  ∈  dom  𝑠  →  ( 𝑠 ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( 𝑠 ‘ 𝑘 ) ) ) }  ↔  ( suc  𝑘  ∈  dom  ( ℎ ‘ suc  𝑘 )  →  ( ( ℎ ‘ suc  𝑘 ) ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( ( ℎ ‘ suc  𝑘 ) ‘ 𝑘 ) ) ) ) | 
						
							| 338 | 328 337 | imbitrdi | ⊢ ( ran  ℎ  ⊆  𝑆  →  ( ( ℎ ‘ suc  𝑘 )  ∈  ran  ℎ  →  ( suc  𝑘  ∈  dom  ( ℎ ‘ suc  𝑘 )  →  ( ( ℎ ‘ suc  𝑘 ) ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( ( ℎ ‘ suc  𝑘 ) ‘ 𝑘 ) ) ) ) ) | 
						
							| 339 | 294 298 307 338 | syl3c | ⊢ ( ( ( ℎ : ω ⟶ 𝑆  ∧  ∀ 𝑘  ∈  ω ( ℎ ‘ suc  𝑘 )  ∈  ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) )  ∧  𝑘  ∈  ω )  →  ( ( ℎ ‘ suc  𝑘 ) ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( ( ℎ ‘ suc  𝑘 ) ‘ 𝑘 ) ) ) | 
						
							| 340 | 209 | adantr | ⊢ ( ( ( ℎ : ω ⟶ 𝑆  ∧  ∀ 𝑘  ∈  ω ( ℎ ‘ suc  𝑘 )  ∈  ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) )  ∧  𝑘  ∈  ω )  →  Fun  ∪  ran  ℎ ) | 
						
							| 341 |  | elssuni | ⊢ ( ( ℎ ‘ suc  𝑘 )  ∈  ran  ℎ  →  ( ℎ ‘ suc  𝑘 )  ⊆  ∪  ran  ℎ ) | 
						
							| 342 | 297 341 | syl | ⊢ ( ( ℎ : ω ⟶ 𝑆  ∧  𝑘  ∈  ω )  →  ( ℎ ‘ suc  𝑘 )  ⊆  ∪  ran  ℎ ) | 
						
							| 343 | 342 | adantlr | ⊢ ( ( ( ℎ : ω ⟶ 𝑆  ∧  ∀ 𝑘  ∈  ω ( ℎ ‘ suc  𝑘 )  ∈  ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) )  ∧  𝑘  ∈  ω )  →  ( ℎ ‘ suc  𝑘 )  ⊆  ∪  ran  ℎ ) | 
						
							| 344 |  | funssfv | ⊢ ( ( Fun  ∪  ran  ℎ  ∧  ( ℎ ‘ suc  𝑘 )  ⊆  ∪  ran  ℎ  ∧  suc  𝑘  ∈  dom  ( ℎ ‘ suc  𝑘 ) )  →  ( ∪  ran  ℎ ‘ suc  𝑘 )  =  ( ( ℎ ‘ suc  𝑘 ) ‘ suc  𝑘 ) ) | 
						
							| 345 | 340 343 307 344 | syl3anc | ⊢ ( ( ( ℎ : ω ⟶ 𝑆  ∧  ∀ 𝑘  ∈  ω ( ℎ ‘ suc  𝑘 )  ∈  ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) )  ∧  𝑘  ∈  ω )  →  ( ∪  ran  ℎ ‘ suc  𝑘 )  =  ( ( ℎ ‘ suc  𝑘 ) ‘ suc  𝑘 ) ) | 
						
							| 346 | 215 | sseld | ⊢ ( ℎ : ω ⟶ 𝑆  →  ( ( ℎ ‘ suc  𝑘 )  ∈  ran  ℎ  →  ( ℎ ‘ suc  𝑘 )  ∈  { 𝑠  ∣  ( ∅  ∈  dom  𝑠  ∧  dom  𝑠  ∈  ω ) } ) ) | 
						
							| 347 | 330 | eleq2d | ⊢ ( 𝑠  =  ( ℎ ‘ suc  𝑘 )  →  ( ∅  ∈  dom  𝑠  ↔  ∅  ∈  dom  ( ℎ ‘ suc  𝑘 ) ) ) | 
						
							| 348 | 330 | eleq1d | ⊢ ( 𝑠  =  ( ℎ ‘ suc  𝑘 )  →  ( dom  𝑠  ∈  ω  ↔  dom  ( ℎ ‘ suc  𝑘 )  ∈  ω ) ) | 
						
							| 349 | 347 348 | anbi12d | ⊢ ( 𝑠  =  ( ℎ ‘ suc  𝑘 )  →  ( ( ∅  ∈  dom  𝑠  ∧  dom  𝑠  ∈  ω )  ↔  ( ∅  ∈  dom  ( ℎ ‘ suc  𝑘 )  ∧  dom  ( ℎ ‘ suc  𝑘 )  ∈  ω ) ) ) | 
						
							| 350 | 329 349 | elab | ⊢ ( ( ℎ ‘ suc  𝑘 )  ∈  { 𝑠  ∣  ( ∅  ∈  dom  𝑠  ∧  dom  𝑠  ∈  ω ) }  ↔  ( ∅  ∈  dom  ( ℎ ‘ suc  𝑘 )  ∧  dom  ( ℎ ‘ suc  𝑘 )  ∈  ω ) ) | 
						
							| 351 | 346 350 | imbitrdi | ⊢ ( ℎ : ω ⟶ 𝑆  →  ( ( ℎ ‘ suc  𝑘 )  ∈  ran  ℎ  →  ( ∅  ∈  dom  ( ℎ ‘ suc  𝑘 )  ∧  dom  ( ℎ ‘ suc  𝑘 )  ∈  ω ) ) ) | 
						
							| 352 | 351 | adantr | ⊢ ( ( ℎ : ω ⟶ 𝑆  ∧  𝑘  ∈  ω )  →  ( ( ℎ ‘ suc  𝑘 )  ∈  ran  ℎ  →  ( ∅  ∈  dom  ( ℎ ‘ suc  𝑘 )  ∧  dom  ( ℎ ‘ suc  𝑘 )  ∈  ω ) ) ) | 
						
							| 353 | 297 352 | mpd | ⊢ ( ( ℎ : ω ⟶ 𝑆  ∧  𝑘  ∈  ω )  →  ( ∅  ∈  dom  ( ℎ ‘ suc  𝑘 )  ∧  dom  ( ℎ ‘ suc  𝑘 )  ∈  ω ) ) | 
						
							| 354 | 353 | simprd | ⊢ ( ( ℎ : ω ⟶ 𝑆  ∧  𝑘  ∈  ω )  →  dom  ( ℎ ‘ suc  𝑘 )  ∈  ω ) | 
						
							| 355 |  | nnord | ⊢ ( dom  ( ℎ ‘ suc  𝑘 )  ∈  ω  →  Ord  dom  ( ℎ ‘ suc  𝑘 ) ) | 
						
							| 356 |  | ordtr | ⊢ ( Ord  dom  ( ℎ ‘ suc  𝑘 )  →  Tr  dom  ( ℎ ‘ suc  𝑘 ) ) | 
						
							| 357 |  | trsuc | ⊢ ( ( Tr  dom  ( ℎ ‘ suc  𝑘 )  ∧  suc  𝑘  ∈  dom  ( ℎ ‘ suc  𝑘 ) )  →  𝑘  ∈  dom  ( ℎ ‘ suc  𝑘 ) ) | 
						
							| 358 | 357 | ex | ⊢ ( Tr  dom  ( ℎ ‘ suc  𝑘 )  →  ( suc  𝑘  ∈  dom  ( ℎ ‘ suc  𝑘 )  →  𝑘  ∈  dom  ( ℎ ‘ suc  𝑘 ) ) ) | 
						
							| 359 | 354 355 356 358 | 4syl | ⊢ ( ( ℎ : ω ⟶ 𝑆  ∧  𝑘  ∈  ω )  →  ( suc  𝑘  ∈  dom  ( ℎ ‘ suc  𝑘 )  →  𝑘  ∈  dom  ( ℎ ‘ suc  𝑘 ) ) ) | 
						
							| 360 | 359 | adantlr | ⊢ ( ( ( ℎ : ω ⟶ 𝑆  ∧  ∀ 𝑘  ∈  ω ( ℎ ‘ suc  𝑘 )  ∈  ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) )  ∧  𝑘  ∈  ω )  →  ( suc  𝑘  ∈  dom  ( ℎ ‘ suc  𝑘 )  →  𝑘  ∈  dom  ( ℎ ‘ suc  𝑘 ) ) ) | 
						
							| 361 | 307 360 | mpd | ⊢ ( ( ( ℎ : ω ⟶ 𝑆  ∧  ∀ 𝑘  ∈  ω ( ℎ ‘ suc  𝑘 )  ∈  ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) )  ∧  𝑘  ∈  ω )  →  𝑘  ∈  dom  ( ℎ ‘ suc  𝑘 ) ) | 
						
							| 362 |  | funssfv | ⊢ ( ( Fun  ∪  ran  ℎ  ∧  ( ℎ ‘ suc  𝑘 )  ⊆  ∪  ran  ℎ  ∧  𝑘  ∈  dom  ( ℎ ‘ suc  𝑘 ) )  →  ( ∪  ran  ℎ ‘ 𝑘 )  =  ( ( ℎ ‘ suc  𝑘 ) ‘ 𝑘 ) ) | 
						
							| 363 | 340 343 361 362 | syl3anc | ⊢ ( ( ( ℎ : ω ⟶ 𝑆  ∧  ∀ 𝑘  ∈  ω ( ℎ ‘ suc  𝑘 )  ∈  ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) )  ∧  𝑘  ∈  ω )  →  ( ∪  ran  ℎ ‘ 𝑘 )  =  ( ( ℎ ‘ suc  𝑘 ) ‘ 𝑘 ) ) | 
						
							| 364 |  | simpl | ⊢ ( ( ( ∪  ran  ℎ ‘ suc  𝑘 )  =  ( ( ℎ ‘ suc  𝑘 ) ‘ suc  𝑘 )  ∧  ( ∪  ran  ℎ ‘ 𝑘 )  =  ( ( ℎ ‘ suc  𝑘 ) ‘ 𝑘 ) )  →  ( ∪  ran  ℎ ‘ suc  𝑘 )  =  ( ( ℎ ‘ suc  𝑘 ) ‘ suc  𝑘 ) ) | 
						
							| 365 |  | simpr | ⊢ ( ( ( ∪  ran  ℎ ‘ suc  𝑘 )  =  ( ( ℎ ‘ suc  𝑘 ) ‘ suc  𝑘 )  ∧  ( ∪  ran  ℎ ‘ 𝑘 )  =  ( ( ℎ ‘ suc  𝑘 ) ‘ 𝑘 ) )  →  ( ∪  ran  ℎ ‘ 𝑘 )  =  ( ( ℎ ‘ suc  𝑘 ) ‘ 𝑘 ) ) | 
						
							| 366 | 365 | fveq2d | ⊢ ( ( ( ∪  ran  ℎ ‘ suc  𝑘 )  =  ( ( ℎ ‘ suc  𝑘 ) ‘ suc  𝑘 )  ∧  ( ∪  ran  ℎ ‘ 𝑘 )  =  ( ( ℎ ‘ suc  𝑘 ) ‘ 𝑘 ) )  →  ( 𝐹 ‘ ( ∪  ran  ℎ ‘ 𝑘 ) )  =  ( 𝐹 ‘ ( ( ℎ ‘ suc  𝑘 ) ‘ 𝑘 ) ) ) | 
						
							| 367 | 364 366 | eleq12d | ⊢ ( ( ( ∪  ran  ℎ ‘ suc  𝑘 )  =  ( ( ℎ ‘ suc  𝑘 ) ‘ suc  𝑘 )  ∧  ( ∪  ran  ℎ ‘ 𝑘 )  =  ( ( ℎ ‘ suc  𝑘 ) ‘ 𝑘 ) )  →  ( ( ∪  ran  ℎ ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( ∪  ran  ℎ ‘ 𝑘 ) )  ↔  ( ( ℎ ‘ suc  𝑘 ) ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( ( ℎ ‘ suc  𝑘 ) ‘ 𝑘 ) ) ) ) | 
						
							| 368 | 345 363 367 | syl2anc | ⊢ ( ( ( ℎ : ω ⟶ 𝑆  ∧  ∀ 𝑘  ∈  ω ( ℎ ‘ suc  𝑘 )  ∈  ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) )  ∧  𝑘  ∈  ω )  →  ( ( ∪  ran  ℎ ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( ∪  ran  ℎ ‘ 𝑘 ) )  ↔  ( ( ℎ ‘ suc  𝑘 ) ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( ( ℎ ‘ suc  𝑘 ) ‘ 𝑘 ) ) ) ) | 
						
							| 369 | 339 368 | mpbird | ⊢ ( ( ( ℎ : ω ⟶ 𝑆  ∧  ∀ 𝑘  ∈  ω ( ℎ ‘ suc  𝑘 )  ∈  ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) )  ∧  𝑘  ∈  ω )  →  ( ∪  ran  ℎ ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( ∪  ran  ℎ ‘ 𝑘 ) ) ) | 
						
							| 370 | 369 | ex | ⊢ ( ( ℎ : ω ⟶ 𝑆  ∧  ∀ 𝑘  ∈  ω ( ℎ ‘ suc  𝑘 )  ∈  ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) )  →  ( 𝑘  ∈  ω  →  ( ∪  ran  ℎ ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( ∪  ran  ℎ ‘ 𝑘 ) ) ) ) | 
						
							| 371 | 293 370 | ralrimi | ⊢ ( ( ℎ : ω ⟶ 𝑆  ∧  ∀ 𝑘  ∈  ω ( ℎ ‘ suc  𝑘 )  ∈  ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) )  →  ∀ 𝑘  ∈  ω ( ∪  ran  ℎ ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( ∪  ran  ℎ ‘ 𝑘 ) ) ) | 
						
							| 372 |  | vex | ⊢ ℎ  ∈  V | 
						
							| 373 | 372 | rnex | ⊢ ran  ℎ  ∈  V | 
						
							| 374 | 373 | uniex | ⊢ ∪  ran  ℎ  ∈  V | 
						
							| 375 |  | feq1 | ⊢ ( 𝑔  =  ∪  ran  ℎ  →  ( 𝑔 : ω ⟶ 𝐴  ↔  ∪  ran  ℎ : ω ⟶ 𝐴 ) ) | 
						
							| 376 |  | fveq1 | ⊢ ( 𝑔  =  ∪  ran  ℎ  →  ( 𝑔 ‘ ∅ )  =  ( ∪  ran  ℎ ‘ ∅ ) ) | 
						
							| 377 | 376 | eqeq1d | ⊢ ( 𝑔  =  ∪  ran  ℎ  →  ( ( 𝑔 ‘ ∅ )  =  𝐶  ↔  ( ∪  ran  ℎ ‘ ∅ )  =  𝐶 ) ) | 
						
							| 378 |  | fveq1 | ⊢ ( 𝑔  =  ∪  ran  ℎ  →  ( 𝑔 ‘ suc  𝑘 )  =  ( ∪  ran  ℎ ‘ suc  𝑘 ) ) | 
						
							| 379 |  | fveq1 | ⊢ ( 𝑔  =  ∪  ran  ℎ  →  ( 𝑔 ‘ 𝑘 )  =  ( ∪  ran  ℎ ‘ 𝑘 ) ) | 
						
							| 380 | 379 | fveq2d | ⊢ ( 𝑔  =  ∪  ran  ℎ  →  ( 𝐹 ‘ ( 𝑔 ‘ 𝑘 ) )  =  ( 𝐹 ‘ ( ∪  ran  ℎ ‘ 𝑘 ) ) ) | 
						
							| 381 | 378 380 | eleq12d | ⊢ ( 𝑔  =  ∪  ran  ℎ  →  ( ( 𝑔 ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( 𝑔 ‘ 𝑘 ) )  ↔  ( ∪  ran  ℎ ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( ∪  ran  ℎ ‘ 𝑘 ) ) ) ) | 
						
							| 382 | 381 | ralbidv | ⊢ ( 𝑔  =  ∪  ran  ℎ  →  ( ∀ 𝑘  ∈  ω ( 𝑔 ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( 𝑔 ‘ 𝑘 ) )  ↔  ∀ 𝑘  ∈  ω ( ∪  ran  ℎ ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( ∪  ran  ℎ ‘ 𝑘 ) ) ) ) | 
						
							| 383 | 375 377 382 | 3anbi123d | ⊢ ( 𝑔  =  ∪  ran  ℎ  →  ( ( 𝑔 : ω ⟶ 𝐴  ∧  ( 𝑔 ‘ ∅ )  =  𝐶  ∧  ∀ 𝑘  ∈  ω ( 𝑔 ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( 𝑔 ‘ 𝑘 ) ) )  ↔  ( ∪  ran  ℎ : ω ⟶ 𝐴  ∧  ( ∪  ran  ℎ ‘ ∅ )  =  𝐶  ∧  ∀ 𝑘  ∈  ω ( ∪  ran  ℎ ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( ∪  ran  ℎ ‘ 𝑘 ) ) ) ) ) | 
						
							| 384 | 374 383 | spcev | ⊢ ( ( ∪  ran  ℎ : ω ⟶ 𝐴  ∧  ( ∪  ran  ℎ ‘ ∅ )  =  𝐶  ∧  ∀ 𝑘  ∈  ω ( ∪  ran  ℎ ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( ∪  ran  ℎ ‘ 𝑘 ) ) )  →  ∃ 𝑔 ( 𝑔 : ω ⟶ 𝐴  ∧  ( 𝑔 ‘ ∅ )  =  𝐶  ∧  ∀ 𝑘  ∈  ω ( 𝑔 ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( 𝑔 ‘ 𝑘 ) ) ) ) | 
						
							| 385 | 268 290 371 384 | syl3anc | ⊢ ( ( ℎ : ω ⟶ 𝑆  ∧  ∀ 𝑘  ∈  ω ( ℎ ‘ suc  𝑘 )  ∈  ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) )  →  ∃ 𝑔 ( 𝑔 : ω ⟶ 𝐴  ∧  ( 𝑔 ‘ ∅ )  =  𝐶  ∧  ∀ 𝑘  ∈  ω ( 𝑔 ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( 𝑔 ‘ 𝑘 ) ) ) ) | 
						
							| 386 | 385 | exlimiv | ⊢ ( ∃ ℎ ( ℎ : ω ⟶ 𝑆  ∧  ∀ 𝑘  ∈  ω ( ℎ ‘ suc  𝑘 )  ∈  ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) )  →  ∃ 𝑔 ( 𝑔 : ω ⟶ 𝐴  ∧  ( 𝑔 ‘ ∅ )  =  𝐶  ∧  ∀ 𝑘  ∈  ω ( 𝑔 ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( 𝑔 ‘ 𝑘 ) ) ) ) |