Step |
Hyp |
Ref |
Expression |
1 |
|
axdc3lem3.1 |
⊢ 𝐴 ∈ V |
2 |
|
axdc3lem3.2 |
⊢ 𝑆 = { 𝑠 ∣ ∃ 𝑛 ∈ ω ( 𝑠 : suc 𝑛 ⟶ 𝐴 ∧ ( 𝑠 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘 ∈ 𝑛 ( 𝑠 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑠 ‘ 𝑘 ) ) ) } |
3 |
|
axdc3lem3.3 |
⊢ 𝐵 ∈ V |
4 |
2
|
eleq2i |
⊢ ( 𝐵 ∈ 𝑆 ↔ 𝐵 ∈ { 𝑠 ∣ ∃ 𝑛 ∈ ω ( 𝑠 : suc 𝑛 ⟶ 𝐴 ∧ ( 𝑠 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘 ∈ 𝑛 ( 𝑠 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑠 ‘ 𝑘 ) ) ) } ) |
5 |
|
feq1 |
⊢ ( 𝑠 = 𝐵 → ( 𝑠 : suc 𝑛 ⟶ 𝐴 ↔ 𝐵 : suc 𝑛 ⟶ 𝐴 ) ) |
6 |
|
fveq1 |
⊢ ( 𝑠 = 𝐵 → ( 𝑠 ‘ ∅ ) = ( 𝐵 ‘ ∅ ) ) |
7 |
6
|
eqeq1d |
⊢ ( 𝑠 = 𝐵 → ( ( 𝑠 ‘ ∅ ) = 𝐶 ↔ ( 𝐵 ‘ ∅ ) = 𝐶 ) ) |
8 |
|
fveq1 |
⊢ ( 𝑠 = 𝐵 → ( 𝑠 ‘ suc 𝑘 ) = ( 𝐵 ‘ suc 𝑘 ) ) |
9 |
|
fveq1 |
⊢ ( 𝑠 = 𝐵 → ( 𝑠 ‘ 𝑘 ) = ( 𝐵 ‘ 𝑘 ) ) |
10 |
9
|
fveq2d |
⊢ ( 𝑠 = 𝐵 → ( 𝐹 ‘ ( 𝑠 ‘ 𝑘 ) ) = ( 𝐹 ‘ ( 𝐵 ‘ 𝑘 ) ) ) |
11 |
8 10
|
eleq12d |
⊢ ( 𝑠 = 𝐵 → ( ( 𝑠 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑠 ‘ 𝑘 ) ) ↔ ( 𝐵 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝐵 ‘ 𝑘 ) ) ) ) |
12 |
11
|
ralbidv |
⊢ ( 𝑠 = 𝐵 → ( ∀ 𝑘 ∈ 𝑛 ( 𝑠 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑠 ‘ 𝑘 ) ) ↔ ∀ 𝑘 ∈ 𝑛 ( 𝐵 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝐵 ‘ 𝑘 ) ) ) ) |
13 |
5 7 12
|
3anbi123d |
⊢ ( 𝑠 = 𝐵 → ( ( 𝑠 : suc 𝑛 ⟶ 𝐴 ∧ ( 𝑠 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘 ∈ 𝑛 ( 𝑠 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑠 ‘ 𝑘 ) ) ) ↔ ( 𝐵 : suc 𝑛 ⟶ 𝐴 ∧ ( 𝐵 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘 ∈ 𝑛 ( 𝐵 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝐵 ‘ 𝑘 ) ) ) ) ) |
14 |
13
|
rexbidv |
⊢ ( 𝑠 = 𝐵 → ( ∃ 𝑛 ∈ ω ( 𝑠 : suc 𝑛 ⟶ 𝐴 ∧ ( 𝑠 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘 ∈ 𝑛 ( 𝑠 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑠 ‘ 𝑘 ) ) ) ↔ ∃ 𝑛 ∈ ω ( 𝐵 : suc 𝑛 ⟶ 𝐴 ∧ ( 𝐵 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘 ∈ 𝑛 ( 𝐵 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝐵 ‘ 𝑘 ) ) ) ) ) |
15 |
3 14
|
elab |
⊢ ( 𝐵 ∈ { 𝑠 ∣ ∃ 𝑛 ∈ ω ( 𝑠 : suc 𝑛 ⟶ 𝐴 ∧ ( 𝑠 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘 ∈ 𝑛 ( 𝑠 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑠 ‘ 𝑘 ) ) ) } ↔ ∃ 𝑛 ∈ ω ( 𝐵 : suc 𝑛 ⟶ 𝐴 ∧ ( 𝐵 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘 ∈ 𝑛 ( 𝐵 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝐵 ‘ 𝑘 ) ) ) ) |
16 |
|
suceq |
⊢ ( 𝑛 = 𝑚 → suc 𝑛 = suc 𝑚 ) |
17 |
16
|
feq2d |
⊢ ( 𝑛 = 𝑚 → ( 𝐵 : suc 𝑛 ⟶ 𝐴 ↔ 𝐵 : suc 𝑚 ⟶ 𝐴 ) ) |
18 |
|
raleq |
⊢ ( 𝑛 = 𝑚 → ( ∀ 𝑘 ∈ 𝑛 ( 𝐵 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝐵 ‘ 𝑘 ) ) ↔ ∀ 𝑘 ∈ 𝑚 ( 𝐵 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝐵 ‘ 𝑘 ) ) ) ) |
19 |
17 18
|
3anbi13d |
⊢ ( 𝑛 = 𝑚 → ( ( 𝐵 : suc 𝑛 ⟶ 𝐴 ∧ ( 𝐵 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘 ∈ 𝑛 ( 𝐵 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝐵 ‘ 𝑘 ) ) ) ↔ ( 𝐵 : suc 𝑚 ⟶ 𝐴 ∧ ( 𝐵 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘 ∈ 𝑚 ( 𝐵 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝐵 ‘ 𝑘 ) ) ) ) ) |
20 |
19
|
cbvrexvw |
⊢ ( ∃ 𝑛 ∈ ω ( 𝐵 : suc 𝑛 ⟶ 𝐴 ∧ ( 𝐵 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘 ∈ 𝑛 ( 𝐵 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝐵 ‘ 𝑘 ) ) ) ↔ ∃ 𝑚 ∈ ω ( 𝐵 : suc 𝑚 ⟶ 𝐴 ∧ ( 𝐵 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘 ∈ 𝑚 ( 𝐵 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝐵 ‘ 𝑘 ) ) ) ) |
21 |
4 15 20
|
3bitri |
⊢ ( 𝐵 ∈ 𝑆 ↔ ∃ 𝑚 ∈ ω ( 𝐵 : suc 𝑚 ⟶ 𝐴 ∧ ( 𝐵 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘 ∈ 𝑚 ( 𝐵 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝐵 ‘ 𝑘 ) ) ) ) |