| Step | Hyp | Ref | Expression | 
						
							| 1 |  | axdc3lem3.1 | ⊢ 𝐴  ∈  V | 
						
							| 2 |  | axdc3lem3.2 | ⊢ 𝑆  =  { 𝑠  ∣  ∃ 𝑛  ∈  ω ( 𝑠 : suc  𝑛 ⟶ 𝐴  ∧  ( 𝑠 ‘ ∅ )  =  𝐶  ∧  ∀ 𝑘  ∈  𝑛 ( 𝑠 ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( 𝑠 ‘ 𝑘 ) ) ) } | 
						
							| 3 |  | axdc3lem3.3 | ⊢ 𝐵  ∈  V | 
						
							| 4 | 2 | eleq2i | ⊢ ( 𝐵  ∈  𝑆  ↔  𝐵  ∈  { 𝑠  ∣  ∃ 𝑛  ∈  ω ( 𝑠 : suc  𝑛 ⟶ 𝐴  ∧  ( 𝑠 ‘ ∅ )  =  𝐶  ∧  ∀ 𝑘  ∈  𝑛 ( 𝑠 ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( 𝑠 ‘ 𝑘 ) ) ) } ) | 
						
							| 5 |  | feq1 | ⊢ ( 𝑠  =  𝐵  →  ( 𝑠 : suc  𝑛 ⟶ 𝐴  ↔  𝐵 : suc  𝑛 ⟶ 𝐴 ) ) | 
						
							| 6 |  | fveq1 | ⊢ ( 𝑠  =  𝐵  →  ( 𝑠 ‘ ∅ )  =  ( 𝐵 ‘ ∅ ) ) | 
						
							| 7 | 6 | eqeq1d | ⊢ ( 𝑠  =  𝐵  →  ( ( 𝑠 ‘ ∅ )  =  𝐶  ↔  ( 𝐵 ‘ ∅ )  =  𝐶 ) ) | 
						
							| 8 |  | fveq1 | ⊢ ( 𝑠  =  𝐵  →  ( 𝑠 ‘ suc  𝑘 )  =  ( 𝐵 ‘ suc  𝑘 ) ) | 
						
							| 9 |  | fveq1 | ⊢ ( 𝑠  =  𝐵  →  ( 𝑠 ‘ 𝑘 )  =  ( 𝐵 ‘ 𝑘 ) ) | 
						
							| 10 | 9 | fveq2d | ⊢ ( 𝑠  =  𝐵  →  ( 𝐹 ‘ ( 𝑠 ‘ 𝑘 ) )  =  ( 𝐹 ‘ ( 𝐵 ‘ 𝑘 ) ) ) | 
						
							| 11 | 8 10 | eleq12d | ⊢ ( 𝑠  =  𝐵  →  ( ( 𝑠 ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( 𝑠 ‘ 𝑘 ) )  ↔  ( 𝐵 ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( 𝐵 ‘ 𝑘 ) ) ) ) | 
						
							| 12 | 11 | ralbidv | ⊢ ( 𝑠  =  𝐵  →  ( ∀ 𝑘  ∈  𝑛 ( 𝑠 ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( 𝑠 ‘ 𝑘 ) )  ↔  ∀ 𝑘  ∈  𝑛 ( 𝐵 ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( 𝐵 ‘ 𝑘 ) ) ) ) | 
						
							| 13 | 5 7 12 | 3anbi123d | ⊢ ( 𝑠  =  𝐵  →  ( ( 𝑠 : suc  𝑛 ⟶ 𝐴  ∧  ( 𝑠 ‘ ∅ )  =  𝐶  ∧  ∀ 𝑘  ∈  𝑛 ( 𝑠 ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( 𝑠 ‘ 𝑘 ) ) )  ↔  ( 𝐵 : suc  𝑛 ⟶ 𝐴  ∧  ( 𝐵 ‘ ∅ )  =  𝐶  ∧  ∀ 𝑘  ∈  𝑛 ( 𝐵 ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( 𝐵 ‘ 𝑘 ) ) ) ) ) | 
						
							| 14 | 13 | rexbidv | ⊢ ( 𝑠  =  𝐵  →  ( ∃ 𝑛  ∈  ω ( 𝑠 : suc  𝑛 ⟶ 𝐴  ∧  ( 𝑠 ‘ ∅ )  =  𝐶  ∧  ∀ 𝑘  ∈  𝑛 ( 𝑠 ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( 𝑠 ‘ 𝑘 ) ) )  ↔  ∃ 𝑛  ∈  ω ( 𝐵 : suc  𝑛 ⟶ 𝐴  ∧  ( 𝐵 ‘ ∅ )  =  𝐶  ∧  ∀ 𝑘  ∈  𝑛 ( 𝐵 ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( 𝐵 ‘ 𝑘 ) ) ) ) ) | 
						
							| 15 | 3 14 | elab | ⊢ ( 𝐵  ∈  { 𝑠  ∣  ∃ 𝑛  ∈  ω ( 𝑠 : suc  𝑛 ⟶ 𝐴  ∧  ( 𝑠 ‘ ∅ )  =  𝐶  ∧  ∀ 𝑘  ∈  𝑛 ( 𝑠 ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( 𝑠 ‘ 𝑘 ) ) ) }  ↔  ∃ 𝑛  ∈  ω ( 𝐵 : suc  𝑛 ⟶ 𝐴  ∧  ( 𝐵 ‘ ∅ )  =  𝐶  ∧  ∀ 𝑘  ∈  𝑛 ( 𝐵 ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( 𝐵 ‘ 𝑘 ) ) ) ) | 
						
							| 16 |  | suceq | ⊢ ( 𝑛  =  𝑚  →  suc  𝑛  =  suc  𝑚 ) | 
						
							| 17 | 16 | feq2d | ⊢ ( 𝑛  =  𝑚  →  ( 𝐵 : suc  𝑛 ⟶ 𝐴  ↔  𝐵 : suc  𝑚 ⟶ 𝐴 ) ) | 
						
							| 18 |  | raleq | ⊢ ( 𝑛  =  𝑚  →  ( ∀ 𝑘  ∈  𝑛 ( 𝐵 ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( 𝐵 ‘ 𝑘 ) )  ↔  ∀ 𝑘  ∈  𝑚 ( 𝐵 ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( 𝐵 ‘ 𝑘 ) ) ) ) | 
						
							| 19 | 17 18 | 3anbi13d | ⊢ ( 𝑛  =  𝑚  →  ( ( 𝐵 : suc  𝑛 ⟶ 𝐴  ∧  ( 𝐵 ‘ ∅ )  =  𝐶  ∧  ∀ 𝑘  ∈  𝑛 ( 𝐵 ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( 𝐵 ‘ 𝑘 ) ) )  ↔  ( 𝐵 : suc  𝑚 ⟶ 𝐴  ∧  ( 𝐵 ‘ ∅ )  =  𝐶  ∧  ∀ 𝑘  ∈  𝑚 ( 𝐵 ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( 𝐵 ‘ 𝑘 ) ) ) ) ) | 
						
							| 20 | 19 | cbvrexvw | ⊢ ( ∃ 𝑛  ∈  ω ( 𝐵 : suc  𝑛 ⟶ 𝐴  ∧  ( 𝐵 ‘ ∅ )  =  𝐶  ∧  ∀ 𝑘  ∈  𝑛 ( 𝐵 ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( 𝐵 ‘ 𝑘 ) ) )  ↔  ∃ 𝑚  ∈  ω ( 𝐵 : suc  𝑚 ⟶ 𝐴  ∧  ( 𝐵 ‘ ∅ )  =  𝐶  ∧  ∀ 𝑘  ∈  𝑚 ( 𝐵 ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( 𝐵 ‘ 𝑘 ) ) ) ) | 
						
							| 21 | 4 15 20 | 3bitri | ⊢ ( 𝐵  ∈  𝑆  ↔  ∃ 𝑚  ∈  ω ( 𝐵 : suc  𝑚 ⟶ 𝐴  ∧  ( 𝐵 ‘ ∅ )  =  𝐶  ∧  ∀ 𝑘  ∈  𝑚 ( 𝐵 ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( 𝐵 ‘ 𝑘 ) ) ) ) |