| Step | Hyp | Ref | Expression | 
						
							| 1 |  | axdc3lem4.1 | ⊢ 𝐴  ∈  V | 
						
							| 2 |  | axdc3lem4.2 | ⊢ 𝑆  =  { 𝑠  ∣  ∃ 𝑛  ∈  ω ( 𝑠 : suc  𝑛 ⟶ 𝐴  ∧  ( 𝑠 ‘ ∅ )  =  𝐶  ∧  ∀ 𝑘  ∈  𝑛 ( 𝑠 ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( 𝑠 ‘ 𝑘 ) ) ) } | 
						
							| 3 |  | axdc3lem4.3 | ⊢ 𝐺  =  ( 𝑥  ∈  𝑆  ↦  { 𝑦  ∈  𝑆  ∣  ( dom  𝑦  =  suc  dom  𝑥  ∧  ( 𝑦  ↾  dom  𝑥 )  =  𝑥 ) } ) | 
						
							| 4 |  | peano1 | ⊢ ∅  ∈  ω | 
						
							| 5 |  | eqid | ⊢ { 〈 ∅ ,  𝐶 〉 }  =  { 〈 ∅ ,  𝐶 〉 } | 
						
							| 6 |  | fsng | ⊢ ( ( ∅  ∈  ω  ∧  𝐶  ∈  𝐴 )  →  ( { 〈 ∅ ,  𝐶 〉 } : { ∅ } ⟶ { 𝐶 }  ↔  { 〈 ∅ ,  𝐶 〉 }  =  { 〈 ∅ ,  𝐶 〉 } ) ) | 
						
							| 7 | 4 6 | mpan | ⊢ ( 𝐶  ∈  𝐴  →  ( { 〈 ∅ ,  𝐶 〉 } : { ∅ } ⟶ { 𝐶 }  ↔  { 〈 ∅ ,  𝐶 〉 }  =  { 〈 ∅ ,  𝐶 〉 } ) ) | 
						
							| 8 | 5 7 | mpbiri | ⊢ ( 𝐶  ∈  𝐴  →  { 〈 ∅ ,  𝐶 〉 } : { ∅ } ⟶ { 𝐶 } ) | 
						
							| 9 |  | snssi | ⊢ ( 𝐶  ∈  𝐴  →  { 𝐶 }  ⊆  𝐴 ) | 
						
							| 10 | 8 9 | fssd | ⊢ ( 𝐶  ∈  𝐴  →  { 〈 ∅ ,  𝐶 〉 } : { ∅ } ⟶ 𝐴 ) | 
						
							| 11 |  | suc0 | ⊢ suc  ∅  =  { ∅ } | 
						
							| 12 | 11 | feq2i | ⊢ ( { 〈 ∅ ,  𝐶 〉 } : suc  ∅ ⟶ 𝐴  ↔  { 〈 ∅ ,  𝐶 〉 } : { ∅ } ⟶ 𝐴 ) | 
						
							| 13 | 10 12 | sylibr | ⊢ ( 𝐶  ∈  𝐴  →  { 〈 ∅ ,  𝐶 〉 } : suc  ∅ ⟶ 𝐴 ) | 
						
							| 14 |  | fvsng | ⊢ ( ( ∅  ∈  ω  ∧  𝐶  ∈  𝐴 )  →  ( { 〈 ∅ ,  𝐶 〉 } ‘ ∅ )  =  𝐶 ) | 
						
							| 15 | 4 14 | mpan | ⊢ ( 𝐶  ∈  𝐴  →  ( { 〈 ∅ ,  𝐶 〉 } ‘ ∅ )  =  𝐶 ) | 
						
							| 16 |  | ral0 | ⊢ ∀ 𝑘  ∈  ∅ ( { 〈 ∅ ,  𝐶 〉 } ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( { 〈 ∅ ,  𝐶 〉 } ‘ 𝑘 ) ) | 
						
							| 17 | 16 | a1i | ⊢ ( 𝐶  ∈  𝐴  →  ∀ 𝑘  ∈  ∅ ( { 〈 ∅ ,  𝐶 〉 } ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( { 〈 ∅ ,  𝐶 〉 } ‘ 𝑘 ) ) ) | 
						
							| 18 | 13 15 17 | 3jca | ⊢ ( 𝐶  ∈  𝐴  →  ( { 〈 ∅ ,  𝐶 〉 } : suc  ∅ ⟶ 𝐴  ∧  ( { 〈 ∅ ,  𝐶 〉 } ‘ ∅ )  =  𝐶  ∧  ∀ 𝑘  ∈  ∅ ( { 〈 ∅ ,  𝐶 〉 } ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( { 〈 ∅ ,  𝐶 〉 } ‘ 𝑘 ) ) ) ) | 
						
							| 19 |  | suceq | ⊢ ( 𝑚  =  ∅  →  suc  𝑚  =  suc  ∅ ) | 
						
							| 20 | 19 | feq2d | ⊢ ( 𝑚  =  ∅  →  ( { 〈 ∅ ,  𝐶 〉 } : suc  𝑚 ⟶ 𝐴  ↔  { 〈 ∅ ,  𝐶 〉 } : suc  ∅ ⟶ 𝐴 ) ) | 
						
							| 21 |  | raleq | ⊢ ( 𝑚  =  ∅  →  ( ∀ 𝑘  ∈  𝑚 ( { 〈 ∅ ,  𝐶 〉 } ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( { 〈 ∅ ,  𝐶 〉 } ‘ 𝑘 ) )  ↔  ∀ 𝑘  ∈  ∅ ( { 〈 ∅ ,  𝐶 〉 } ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( { 〈 ∅ ,  𝐶 〉 } ‘ 𝑘 ) ) ) ) | 
						
							| 22 | 20 21 | 3anbi13d | ⊢ ( 𝑚  =  ∅  →  ( ( { 〈 ∅ ,  𝐶 〉 } : suc  𝑚 ⟶ 𝐴  ∧  ( { 〈 ∅ ,  𝐶 〉 } ‘ ∅ )  =  𝐶  ∧  ∀ 𝑘  ∈  𝑚 ( { 〈 ∅ ,  𝐶 〉 } ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( { 〈 ∅ ,  𝐶 〉 } ‘ 𝑘 ) ) )  ↔  ( { 〈 ∅ ,  𝐶 〉 } : suc  ∅ ⟶ 𝐴  ∧  ( { 〈 ∅ ,  𝐶 〉 } ‘ ∅ )  =  𝐶  ∧  ∀ 𝑘  ∈  ∅ ( { 〈 ∅ ,  𝐶 〉 } ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( { 〈 ∅ ,  𝐶 〉 } ‘ 𝑘 ) ) ) ) ) | 
						
							| 23 | 22 | rspcev | ⊢ ( ( ∅  ∈  ω  ∧  ( { 〈 ∅ ,  𝐶 〉 } : suc  ∅ ⟶ 𝐴  ∧  ( { 〈 ∅ ,  𝐶 〉 } ‘ ∅ )  =  𝐶  ∧  ∀ 𝑘  ∈  ∅ ( { 〈 ∅ ,  𝐶 〉 } ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( { 〈 ∅ ,  𝐶 〉 } ‘ 𝑘 ) ) ) )  →  ∃ 𝑚  ∈  ω ( { 〈 ∅ ,  𝐶 〉 } : suc  𝑚 ⟶ 𝐴  ∧  ( { 〈 ∅ ,  𝐶 〉 } ‘ ∅ )  =  𝐶  ∧  ∀ 𝑘  ∈  𝑚 ( { 〈 ∅ ,  𝐶 〉 } ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( { 〈 ∅ ,  𝐶 〉 } ‘ 𝑘 ) ) ) ) | 
						
							| 24 | 4 18 23 | sylancr | ⊢ ( 𝐶  ∈  𝐴  →  ∃ 𝑚  ∈  ω ( { 〈 ∅ ,  𝐶 〉 } : suc  𝑚 ⟶ 𝐴  ∧  ( { 〈 ∅ ,  𝐶 〉 } ‘ ∅ )  =  𝐶  ∧  ∀ 𝑘  ∈  𝑚 ( { 〈 ∅ ,  𝐶 〉 } ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( { 〈 ∅ ,  𝐶 〉 } ‘ 𝑘 ) ) ) ) | 
						
							| 25 |  | snex | ⊢ { 〈 ∅ ,  𝐶 〉 }  ∈  V | 
						
							| 26 | 1 2 25 | axdc3lem3 | ⊢ ( { 〈 ∅ ,  𝐶 〉 }  ∈  𝑆  ↔  ∃ 𝑚  ∈  ω ( { 〈 ∅ ,  𝐶 〉 } : suc  𝑚 ⟶ 𝐴  ∧  ( { 〈 ∅ ,  𝐶 〉 } ‘ ∅ )  =  𝐶  ∧  ∀ 𝑘  ∈  𝑚 ( { 〈 ∅ ,  𝐶 〉 } ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( { 〈 ∅ ,  𝐶 〉 } ‘ 𝑘 ) ) ) ) | 
						
							| 27 | 24 26 | sylibr | ⊢ ( 𝐶  ∈  𝐴  →  { 〈 ∅ ,  𝐶 〉 }  ∈  𝑆 ) | 
						
							| 28 | 27 | ne0d | ⊢ ( 𝐶  ∈  𝐴  →  𝑆  ≠  ∅ ) | 
						
							| 29 | 1 2 | axdc3lem | ⊢ 𝑆  ∈  V | 
						
							| 30 |  | ssrab2 | ⊢ { 𝑦  ∈  𝑆  ∣  ( dom  𝑦  =  suc  dom  𝑥  ∧  ( 𝑦  ↾  dom  𝑥 )  =  𝑥 ) }  ⊆  𝑆 | 
						
							| 31 | 29 30 | elpwi2 | ⊢ { 𝑦  ∈  𝑆  ∣  ( dom  𝑦  =  suc  dom  𝑥  ∧  ( 𝑦  ↾  dom  𝑥 )  =  𝑥 ) }  ∈  𝒫  𝑆 | 
						
							| 32 | 31 | a1i | ⊢ ( ( 𝐹 : 𝐴 ⟶ ( 𝒫  𝐴  ∖  { ∅ } )  ∧  𝑥  ∈  𝑆 )  →  { 𝑦  ∈  𝑆  ∣  ( dom  𝑦  =  suc  dom  𝑥  ∧  ( 𝑦  ↾  dom  𝑥 )  =  𝑥 ) }  ∈  𝒫  𝑆 ) | 
						
							| 33 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 34 | 1 2 33 | axdc3lem3 | ⊢ ( 𝑥  ∈  𝑆  ↔  ∃ 𝑚  ∈  ω ( 𝑥 : suc  𝑚 ⟶ 𝐴  ∧  ( 𝑥 ‘ ∅ )  =  𝐶  ∧  ∀ 𝑘  ∈  𝑚 ( 𝑥 ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) ) ) | 
						
							| 35 |  | simp2 | ⊢ ( ( ∀ 𝑘  ∈  𝑚 ( 𝑥 ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) )  ∧  𝑥 : suc  𝑚 ⟶ 𝐴  ∧  𝑚  ∈  ω )  →  𝑥 : suc  𝑚 ⟶ 𝐴 ) | 
						
							| 36 |  | vex | ⊢ 𝑚  ∈  V | 
						
							| 37 | 36 | sucid | ⊢ 𝑚  ∈  suc  𝑚 | 
						
							| 38 |  | ffvelcdm | ⊢ ( ( 𝑥 : suc  𝑚 ⟶ 𝐴  ∧  𝑚  ∈  suc  𝑚 )  →  ( 𝑥 ‘ 𝑚 )  ∈  𝐴 ) | 
						
							| 39 | 37 38 | mpan2 | ⊢ ( 𝑥 : suc  𝑚 ⟶ 𝐴  →  ( 𝑥 ‘ 𝑚 )  ∈  𝐴 ) | 
						
							| 40 |  | ffvelcdm | ⊢ ( ( 𝐹 : 𝐴 ⟶ ( 𝒫  𝐴  ∖  { ∅ } )  ∧  ( 𝑥 ‘ 𝑚 )  ∈  𝐴 )  →  ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) )  ∈  ( 𝒫  𝐴  ∖  { ∅ } ) ) | 
						
							| 41 | 39 40 | sylan2 | ⊢ ( ( 𝐹 : 𝐴 ⟶ ( 𝒫  𝐴  ∖  { ∅ } )  ∧  𝑥 : suc  𝑚 ⟶ 𝐴 )  →  ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) )  ∈  ( 𝒫  𝐴  ∖  { ∅ } ) ) | 
						
							| 42 |  | eldifn | ⊢ ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) )  ∈  ( 𝒫  𝐴  ∖  { ∅ } )  →  ¬  ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) )  ∈  { ∅ } ) | 
						
							| 43 |  | fvex | ⊢ ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) )  ∈  V | 
						
							| 44 | 43 | elsn | ⊢ ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) )  ∈  { ∅ }  ↔  ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) )  =  ∅ ) | 
						
							| 45 | 44 | necon3bbii | ⊢ ( ¬  ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) )  ∈  { ∅ }  ↔  ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) )  ≠  ∅ ) | 
						
							| 46 |  | n0 | ⊢ ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) )  ≠  ∅  ↔  ∃ 𝑧 𝑧  ∈  ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) ) ) | 
						
							| 47 | 45 46 | bitri | ⊢ ( ¬  ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) )  ∈  { ∅ }  ↔  ∃ 𝑧 𝑧  ∈  ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) ) ) | 
						
							| 48 | 42 47 | sylib | ⊢ ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) )  ∈  ( 𝒫  𝐴  ∖  { ∅ } )  →  ∃ 𝑧 𝑧  ∈  ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) ) ) | 
						
							| 49 | 41 48 | syl | ⊢ ( ( 𝐹 : 𝐴 ⟶ ( 𝒫  𝐴  ∖  { ∅ } )  ∧  𝑥 : suc  𝑚 ⟶ 𝐴 )  →  ∃ 𝑧 𝑧  ∈  ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) ) ) | 
						
							| 50 |  | simp32 | ⊢ ( ( 𝑧  ∈  ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) )  ∧  ( 𝑥 ‘ ∅ )  =  𝐶  ∧  ( ∀ 𝑘  ∈  𝑚 ( 𝑥 ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) )  ∧  𝑥 : suc  𝑚 ⟶ 𝐴  ∧  𝑚  ∈  ω ) )  →  𝑥 : suc  𝑚 ⟶ 𝐴 ) | 
						
							| 51 |  | eldifi | ⊢ ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) )  ∈  ( 𝒫  𝐴  ∖  { ∅ } )  →  ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) )  ∈  𝒫  𝐴 ) | 
						
							| 52 |  | elelpwi | ⊢ ( ( 𝑧  ∈  ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) )  ∧  ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) )  ∈  𝒫  𝐴 )  →  𝑧  ∈  𝐴 ) | 
						
							| 53 | 52 | expcom | ⊢ ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) )  ∈  𝒫  𝐴  →  ( 𝑧  ∈  ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) )  →  𝑧  ∈  𝐴 ) ) | 
						
							| 54 | 41 51 53 | 3syl | ⊢ ( ( 𝐹 : 𝐴 ⟶ ( 𝒫  𝐴  ∖  { ∅ } )  ∧  𝑥 : suc  𝑚 ⟶ 𝐴 )  →  ( 𝑧  ∈  ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) )  →  𝑧  ∈  𝐴 ) ) | 
						
							| 55 |  | peano2 | ⊢ ( 𝑚  ∈  ω  →  suc  𝑚  ∈  ω ) | 
						
							| 56 | 55 | 3ad2ant3 | ⊢ ( ( ∀ 𝑘  ∈  𝑚 ( 𝑥 ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) )  ∧  𝑥 : suc  𝑚 ⟶ 𝐴  ∧  𝑚  ∈  ω )  →  suc  𝑚  ∈  ω ) | 
						
							| 57 | 56 | 3ad2ant1 | ⊢ ( ( ( ∀ 𝑘  ∈  𝑚 ( 𝑥 ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) )  ∧  𝑥 : suc  𝑚 ⟶ 𝐴  ∧  𝑚  ∈  ω )  ∧  𝑧  ∈  ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ( 𝑥 ‘ ∅ )  =  𝐶 ) )  →  suc  𝑚  ∈  ω ) | 
						
							| 58 |  | simplr | ⊢ ( ( ( 𝑚  ∈  ω  ∧  𝑥 : suc  𝑚 ⟶ 𝐴 )  ∧  𝑧  ∈  𝐴 )  →  𝑥 : suc  𝑚 ⟶ 𝐴 ) | 
						
							| 59 | 33 | dmex | ⊢ dom  𝑥  ∈  V | 
						
							| 60 |  | vex | ⊢ 𝑧  ∈  V | 
						
							| 61 |  | eqid | ⊢ { 〈 dom  𝑥 ,  𝑧 〉 }  =  { 〈 dom  𝑥 ,  𝑧 〉 } | 
						
							| 62 |  | fsng | ⊢ ( ( dom  𝑥  ∈  V  ∧  𝑧  ∈  V )  →  ( { 〈 dom  𝑥 ,  𝑧 〉 } : { dom  𝑥 } ⟶ { 𝑧 }  ↔  { 〈 dom  𝑥 ,  𝑧 〉 }  =  { 〈 dom  𝑥 ,  𝑧 〉 } ) ) | 
						
							| 63 | 61 62 | mpbiri | ⊢ ( ( dom  𝑥  ∈  V  ∧  𝑧  ∈  V )  →  { 〈 dom  𝑥 ,  𝑧 〉 } : { dom  𝑥 } ⟶ { 𝑧 } ) | 
						
							| 64 | 59 60 63 | mp2an | ⊢ { 〈 dom  𝑥 ,  𝑧 〉 } : { dom  𝑥 } ⟶ { 𝑧 } | 
						
							| 65 |  | simpr | ⊢ ( ( ( 𝑚  ∈  ω  ∧  𝑥 : suc  𝑚 ⟶ 𝐴 )  ∧  𝑧  ∈  𝐴 )  →  𝑧  ∈  𝐴 ) | 
						
							| 66 | 65 | snssd | ⊢ ( ( ( 𝑚  ∈  ω  ∧  𝑥 : suc  𝑚 ⟶ 𝐴 )  ∧  𝑧  ∈  𝐴 )  →  { 𝑧 }  ⊆  𝐴 ) | 
						
							| 67 |  | fss | ⊢ ( ( { 〈 dom  𝑥 ,  𝑧 〉 } : { dom  𝑥 } ⟶ { 𝑧 }  ∧  { 𝑧 }  ⊆  𝐴 )  →  { 〈 dom  𝑥 ,  𝑧 〉 } : { dom  𝑥 } ⟶ 𝐴 ) | 
						
							| 68 | 64 66 67 | sylancr | ⊢ ( ( ( 𝑚  ∈  ω  ∧  𝑥 : suc  𝑚 ⟶ 𝐴 )  ∧  𝑧  ∈  𝐴 )  →  { 〈 dom  𝑥 ,  𝑧 〉 } : { dom  𝑥 } ⟶ 𝐴 ) | 
						
							| 69 |  | fdm | ⊢ ( 𝑥 : suc  𝑚 ⟶ 𝐴  →  dom  𝑥  =  suc  𝑚 ) | 
						
							| 70 | 55 | adantr | ⊢ ( ( 𝑚  ∈  ω  ∧  dom  𝑥  =  suc  𝑚 )  →  suc  𝑚  ∈  ω ) | 
						
							| 71 |  | eleq1 | ⊢ ( dom  𝑥  =  suc  𝑚  →  ( dom  𝑥  ∈  ω  ↔  suc  𝑚  ∈  ω ) ) | 
						
							| 72 | 71 | adantl | ⊢ ( ( 𝑚  ∈  ω  ∧  dom  𝑥  =  suc  𝑚 )  →  ( dom  𝑥  ∈  ω  ↔  suc  𝑚  ∈  ω ) ) | 
						
							| 73 | 70 72 | mpbird | ⊢ ( ( 𝑚  ∈  ω  ∧  dom  𝑥  =  suc  𝑚 )  →  dom  𝑥  ∈  ω ) | 
						
							| 74 |  | nnord | ⊢ ( dom  𝑥  ∈  ω  →  Ord  dom  𝑥 ) | 
						
							| 75 |  | ordirr | ⊢ ( Ord  dom  𝑥  →  ¬  dom  𝑥  ∈  dom  𝑥 ) | 
						
							| 76 | 73 74 75 | 3syl | ⊢ ( ( 𝑚  ∈  ω  ∧  dom  𝑥  =  suc  𝑚 )  →  ¬  dom  𝑥  ∈  dom  𝑥 ) | 
						
							| 77 |  | eleq2 | ⊢ ( dom  𝑥  =  suc  𝑚  →  ( dom  𝑥  ∈  dom  𝑥  ↔  dom  𝑥  ∈  suc  𝑚 ) ) | 
						
							| 78 | 77 | adantl | ⊢ ( ( 𝑚  ∈  ω  ∧  dom  𝑥  =  suc  𝑚 )  →  ( dom  𝑥  ∈  dom  𝑥  ↔  dom  𝑥  ∈  suc  𝑚 ) ) | 
						
							| 79 | 76 78 | mtbid | ⊢ ( ( 𝑚  ∈  ω  ∧  dom  𝑥  =  suc  𝑚 )  →  ¬  dom  𝑥  ∈  suc  𝑚 ) | 
						
							| 80 |  | disjsn | ⊢ ( ( suc  𝑚  ∩  { dom  𝑥 } )  =  ∅  ↔  ¬  dom  𝑥  ∈  suc  𝑚 ) | 
						
							| 81 | 79 80 | sylibr | ⊢ ( ( 𝑚  ∈  ω  ∧  dom  𝑥  =  suc  𝑚 )  →  ( suc  𝑚  ∩  { dom  𝑥 } )  =  ∅ ) | 
						
							| 82 | 69 81 | sylan2 | ⊢ ( ( 𝑚  ∈  ω  ∧  𝑥 : suc  𝑚 ⟶ 𝐴 )  →  ( suc  𝑚  ∩  { dom  𝑥 } )  =  ∅ ) | 
						
							| 83 | 82 | adantr | ⊢ ( ( ( 𝑚  ∈  ω  ∧  𝑥 : suc  𝑚 ⟶ 𝐴 )  ∧  𝑧  ∈  𝐴 )  →  ( suc  𝑚  ∩  { dom  𝑥 } )  =  ∅ ) | 
						
							| 84 | 58 68 83 | fun2d | ⊢ ( ( ( 𝑚  ∈  ω  ∧  𝑥 : suc  𝑚 ⟶ 𝐴 )  ∧  𝑧  ∈  𝐴 )  →  ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } ) : ( suc  𝑚  ∪  { dom  𝑥 } ) ⟶ 𝐴 ) | 
						
							| 85 |  | sneq | ⊢ ( dom  𝑥  =  suc  𝑚  →  { dom  𝑥 }  =  { suc  𝑚 } ) | 
						
							| 86 | 85 | uneq2d | ⊢ ( dom  𝑥  =  suc  𝑚  →  ( suc  𝑚  ∪  { dom  𝑥 } )  =  ( suc  𝑚  ∪  { suc  𝑚 } ) ) | 
						
							| 87 |  | df-suc | ⊢ suc  suc  𝑚  =  ( suc  𝑚  ∪  { suc  𝑚 } ) | 
						
							| 88 | 86 87 | eqtr4di | ⊢ ( dom  𝑥  =  suc  𝑚  →  ( suc  𝑚  ∪  { dom  𝑥 } )  =  suc  suc  𝑚 ) | 
						
							| 89 | 69 88 | syl | ⊢ ( 𝑥 : suc  𝑚 ⟶ 𝐴  →  ( suc  𝑚  ∪  { dom  𝑥 } )  =  suc  suc  𝑚 ) | 
						
							| 90 | 89 | ad2antlr | ⊢ ( ( ( 𝑚  ∈  ω  ∧  𝑥 : suc  𝑚 ⟶ 𝐴 )  ∧  𝑧  ∈  𝐴 )  →  ( suc  𝑚  ∪  { dom  𝑥 } )  =  suc  suc  𝑚 ) | 
						
							| 91 | 90 | feq2d | ⊢ ( ( ( 𝑚  ∈  ω  ∧  𝑥 : suc  𝑚 ⟶ 𝐴 )  ∧  𝑧  ∈  𝐴 )  →  ( ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } ) : ( suc  𝑚  ∪  { dom  𝑥 } ) ⟶ 𝐴  ↔  ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } ) : suc  suc  𝑚 ⟶ 𝐴 ) ) | 
						
							| 92 | 84 91 | mpbid | ⊢ ( ( ( 𝑚  ∈  ω  ∧  𝑥 : suc  𝑚 ⟶ 𝐴 )  ∧  𝑧  ∈  𝐴 )  →  ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } ) : suc  suc  𝑚 ⟶ 𝐴 ) | 
						
							| 93 | 92 | ex | ⊢ ( ( 𝑚  ∈  ω  ∧  𝑥 : suc  𝑚 ⟶ 𝐴 )  →  ( 𝑧  ∈  𝐴  →  ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } ) : suc  suc  𝑚 ⟶ 𝐴 ) ) | 
						
							| 94 | 93 | adantrd | ⊢ ( ( 𝑚  ∈  ω  ∧  𝑥 : suc  𝑚 ⟶ 𝐴 )  →  ( ( 𝑧  ∈  𝐴  ∧  ( 𝑥 ‘ ∅ )  =  𝐶 )  →  ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } ) : suc  suc  𝑚 ⟶ 𝐴 ) ) | 
						
							| 95 | 94 | a1d | ⊢ ( ( 𝑚  ∈  ω  ∧  𝑥 : suc  𝑚 ⟶ 𝐴 )  →  ( 𝑧  ∈  ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) )  →  ( ( 𝑧  ∈  𝐴  ∧  ( 𝑥 ‘ ∅ )  =  𝐶 )  →  ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } ) : suc  suc  𝑚 ⟶ 𝐴 ) ) ) | 
						
							| 96 | 95 | ancoms | ⊢ ( ( 𝑥 : suc  𝑚 ⟶ 𝐴  ∧  𝑚  ∈  ω )  →  ( 𝑧  ∈  ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) )  →  ( ( 𝑧  ∈  𝐴  ∧  ( 𝑥 ‘ ∅ )  =  𝐶 )  →  ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } ) : suc  suc  𝑚 ⟶ 𝐴 ) ) ) | 
						
							| 97 | 96 | 3adant1 | ⊢ ( ( ∀ 𝑘  ∈  𝑚 ( 𝑥 ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) )  ∧  𝑥 : suc  𝑚 ⟶ 𝐴  ∧  𝑚  ∈  ω )  →  ( 𝑧  ∈  ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) )  →  ( ( 𝑧  ∈  𝐴  ∧  ( 𝑥 ‘ ∅ )  =  𝐶 )  →  ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } ) : suc  suc  𝑚 ⟶ 𝐴 ) ) ) | 
						
							| 98 | 97 | 3imp | ⊢ ( ( ( ∀ 𝑘  ∈  𝑚 ( 𝑥 ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) )  ∧  𝑥 : suc  𝑚 ⟶ 𝐴  ∧  𝑚  ∈  ω )  ∧  𝑧  ∈  ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ( 𝑥 ‘ ∅ )  =  𝐶 ) )  →  ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } ) : suc  suc  𝑚 ⟶ 𝐴 ) | 
						
							| 99 |  | ffun | ⊢ ( 𝑥 : suc  𝑚 ⟶ 𝐴  →  Fun  𝑥 ) | 
						
							| 100 | 99 | adantl | ⊢ ( ( 𝑚  ∈  ω  ∧  𝑥 : suc  𝑚 ⟶ 𝐴 )  →  Fun  𝑥 ) | 
						
							| 101 | 59 60 | funsn | ⊢ Fun  { 〈 dom  𝑥 ,  𝑧 〉 } | 
						
							| 102 | 100 101 | jctir | ⊢ ( ( 𝑚  ∈  ω  ∧  𝑥 : suc  𝑚 ⟶ 𝐴 )  →  ( Fun  𝑥  ∧  Fun  { 〈 dom  𝑥 ,  𝑧 〉 } ) ) | 
						
							| 103 | 60 | dmsnop | ⊢ dom  { 〈 dom  𝑥 ,  𝑧 〉 }  =  { dom  𝑥 } | 
						
							| 104 | 103 | ineq2i | ⊢ ( dom  𝑥  ∩  dom  { 〈 dom  𝑥 ,  𝑧 〉 } )  =  ( dom  𝑥  ∩  { dom  𝑥 } ) | 
						
							| 105 |  | disjsn | ⊢ ( ( dom  𝑥  ∩  { dom  𝑥 } )  =  ∅  ↔  ¬  dom  𝑥  ∈  dom  𝑥 ) | 
						
							| 106 | 76 105 | sylibr | ⊢ ( ( 𝑚  ∈  ω  ∧  dom  𝑥  =  suc  𝑚 )  →  ( dom  𝑥  ∩  { dom  𝑥 } )  =  ∅ ) | 
						
							| 107 | 104 106 | eqtrid | ⊢ ( ( 𝑚  ∈  ω  ∧  dom  𝑥  =  suc  𝑚 )  →  ( dom  𝑥  ∩  dom  { 〈 dom  𝑥 ,  𝑧 〉 } )  =  ∅ ) | 
						
							| 108 | 69 107 | sylan2 | ⊢ ( ( 𝑚  ∈  ω  ∧  𝑥 : suc  𝑚 ⟶ 𝐴 )  →  ( dom  𝑥  ∩  dom  { 〈 dom  𝑥 ,  𝑧 〉 } )  =  ∅ ) | 
						
							| 109 |  | funun | ⊢ ( ( ( Fun  𝑥  ∧  Fun  { 〈 dom  𝑥 ,  𝑧 〉 } )  ∧  ( dom  𝑥  ∩  dom  { 〈 dom  𝑥 ,  𝑧 〉 } )  =  ∅ )  →  Fun  ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } ) ) | 
						
							| 110 | 102 108 109 | syl2anc | ⊢ ( ( 𝑚  ∈  ω  ∧  𝑥 : suc  𝑚 ⟶ 𝐴 )  →  Fun  ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } ) ) | 
						
							| 111 |  | ssun1 | ⊢ 𝑥  ⊆  ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } ) | 
						
							| 112 | 111 | a1i | ⊢ ( ( 𝑚  ∈  ω  ∧  𝑥 : suc  𝑚 ⟶ 𝐴 )  →  𝑥  ⊆  ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } ) ) | 
						
							| 113 |  | nnord | ⊢ ( 𝑚  ∈  ω  →  Ord  𝑚 ) | 
						
							| 114 |  | 0elsuc | ⊢ ( Ord  𝑚  →  ∅  ∈  suc  𝑚 ) | 
						
							| 115 | 113 114 | syl | ⊢ ( 𝑚  ∈  ω  →  ∅  ∈  suc  𝑚 ) | 
						
							| 116 | 115 | adantr | ⊢ ( ( 𝑚  ∈  ω  ∧  𝑥 : suc  𝑚 ⟶ 𝐴 )  →  ∅  ∈  suc  𝑚 ) | 
						
							| 117 | 69 | eleq2d | ⊢ ( 𝑥 : suc  𝑚 ⟶ 𝐴  →  ( ∅  ∈  dom  𝑥  ↔  ∅  ∈  suc  𝑚 ) ) | 
						
							| 118 | 117 | adantl | ⊢ ( ( 𝑚  ∈  ω  ∧  𝑥 : suc  𝑚 ⟶ 𝐴 )  →  ( ∅  ∈  dom  𝑥  ↔  ∅  ∈  suc  𝑚 ) ) | 
						
							| 119 | 116 118 | mpbird | ⊢ ( ( 𝑚  ∈  ω  ∧  𝑥 : suc  𝑚 ⟶ 𝐴 )  →  ∅  ∈  dom  𝑥 ) | 
						
							| 120 |  | funssfv | ⊢ ( ( Fun  ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } )  ∧  𝑥  ⊆  ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } )  ∧  ∅  ∈  dom  𝑥 )  →  ( ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } ) ‘ ∅ )  =  ( 𝑥 ‘ ∅ ) ) | 
						
							| 121 | 110 112 119 120 | syl3anc | ⊢ ( ( 𝑚  ∈  ω  ∧  𝑥 : suc  𝑚 ⟶ 𝐴 )  →  ( ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } ) ‘ ∅ )  =  ( 𝑥 ‘ ∅ ) ) | 
						
							| 122 | 121 | eqeq1d | ⊢ ( ( 𝑚  ∈  ω  ∧  𝑥 : suc  𝑚 ⟶ 𝐴 )  →  ( ( ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } ) ‘ ∅ )  =  𝐶  ↔  ( 𝑥 ‘ ∅ )  =  𝐶 ) ) | 
						
							| 123 | 122 | ancoms | ⊢ ( ( 𝑥 : suc  𝑚 ⟶ 𝐴  ∧  𝑚  ∈  ω )  →  ( ( ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } ) ‘ ∅ )  =  𝐶  ↔  ( 𝑥 ‘ ∅ )  =  𝐶 ) ) | 
						
							| 124 | 123 | 3adant1 | ⊢ ( ( ∀ 𝑘  ∈  𝑚 ( 𝑥 ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) )  ∧  𝑥 : suc  𝑚 ⟶ 𝐴  ∧  𝑚  ∈  ω )  →  ( ( ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } ) ‘ ∅ )  =  𝐶  ↔  ( 𝑥 ‘ ∅ )  =  𝐶 ) ) | 
						
							| 125 | 124 | biimpar | ⊢ ( ( ( ∀ 𝑘  ∈  𝑚 ( 𝑥 ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) )  ∧  𝑥 : suc  𝑚 ⟶ 𝐴  ∧  𝑚  ∈  ω )  ∧  ( 𝑥 ‘ ∅ )  =  𝐶 )  →  ( ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } ) ‘ ∅ )  =  𝐶 ) | 
						
							| 126 | 125 | adantrl | ⊢ ( ( ( ∀ 𝑘  ∈  𝑚 ( 𝑥 ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) )  ∧  𝑥 : suc  𝑚 ⟶ 𝐴  ∧  𝑚  ∈  ω )  ∧  ( 𝑧  ∈  𝐴  ∧  ( 𝑥 ‘ ∅ )  =  𝐶 ) )  →  ( ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } ) ‘ ∅ )  =  𝐶 ) | 
						
							| 127 | 126 | 3adant2 | ⊢ ( ( ( ∀ 𝑘  ∈  𝑚 ( 𝑥 ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) )  ∧  𝑥 : suc  𝑚 ⟶ 𝐴  ∧  𝑚  ∈  ω )  ∧  𝑧  ∈  ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ( 𝑥 ‘ ∅ )  =  𝐶 ) )  →  ( ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } ) ‘ ∅ )  =  𝐶 ) | 
						
							| 128 |  | nfra1 | ⊢ Ⅎ 𝑘 ∀ 𝑘  ∈  𝑚 ( 𝑥 ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) | 
						
							| 129 |  | nfv | ⊢ Ⅎ 𝑘 𝑥 : suc  𝑚 ⟶ 𝐴 | 
						
							| 130 |  | nfv | ⊢ Ⅎ 𝑘 𝑚  ∈  ω | 
						
							| 131 | 128 129 130 | nf3an | ⊢ Ⅎ 𝑘 ( ∀ 𝑘  ∈  𝑚 ( 𝑥 ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) )  ∧  𝑥 : suc  𝑚 ⟶ 𝐴  ∧  𝑚  ∈  ω ) | 
						
							| 132 |  | nfv | ⊢ Ⅎ 𝑘 𝑧  ∈  ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) ) | 
						
							| 133 |  | nfv | ⊢ Ⅎ 𝑘 ( 𝑧  ∈  𝐴  ∧  ( 𝑥 ‘ ∅ )  =  𝐶 ) | 
						
							| 134 | 131 132 133 | nf3an | ⊢ Ⅎ 𝑘 ( ( ∀ 𝑘  ∈  𝑚 ( 𝑥 ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) )  ∧  𝑥 : suc  𝑚 ⟶ 𝐴  ∧  𝑚  ∈  ω )  ∧  𝑧  ∈  ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ( 𝑥 ‘ ∅ )  =  𝐶 ) ) | 
						
							| 135 |  | simplr | ⊢ ( ( ( ∀ 𝑘  ∈  𝑚 ( 𝑥 ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) )  ∧  𝑘  ∈  suc  𝑚 )  ∧  𝑥 : suc  𝑚 ⟶ 𝐴 )  →  𝑘  ∈  suc  𝑚 ) | 
						
							| 136 |  | elsuci | ⊢ ( 𝑘  ∈  suc  𝑚  →  ( 𝑘  ∈  𝑚  ∨  𝑘  =  𝑚 ) ) | 
						
							| 137 |  | rsp | ⊢ ( ∀ 𝑘  ∈  𝑚 ( 𝑥 ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) )  →  ( 𝑘  ∈  𝑚  →  ( 𝑥 ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) ) ) | 
						
							| 138 | 137 | impcom | ⊢ ( ( 𝑘  ∈  𝑚  ∧  ∀ 𝑘  ∈  𝑚 ( 𝑥 ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) )  →  ( 𝑥 ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) ) | 
						
							| 139 | 138 | ad2ant2lr | ⊢ ( ( ( 𝑚  ∈  ω  ∧  𝑘  ∈  𝑚 )  ∧  ( ∀ 𝑘  ∈  𝑚 ( 𝑥 ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) )  ∧  𝑘  ∈  suc  𝑚 ) )  →  ( 𝑥 ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) ) | 
						
							| 140 | 139 | 3adant3 | ⊢ ( ( ( 𝑚  ∈  ω  ∧  𝑘  ∈  𝑚 )  ∧  ( ∀ 𝑘  ∈  𝑚 ( 𝑥 ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) )  ∧  𝑘  ∈  suc  𝑚 )  ∧  𝑥 : suc  𝑚 ⟶ 𝐴 )  →  ( 𝑥 ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) ) | 
						
							| 141 | 110 | adantlr | ⊢ ( ( ( 𝑚  ∈  ω  ∧  𝑘  ∈  𝑚 )  ∧  𝑥 : suc  𝑚 ⟶ 𝐴 )  →  Fun  ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } ) ) | 
						
							| 142 | 111 | a1i | ⊢ ( ( ( 𝑚  ∈  ω  ∧  𝑘  ∈  𝑚 )  ∧  𝑥 : suc  𝑚 ⟶ 𝐴 )  →  𝑥  ⊆  ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } ) ) | 
						
							| 143 |  | ordsucelsuc | ⊢ ( Ord  𝑚  →  ( 𝑘  ∈  𝑚  ↔  suc  𝑘  ∈  suc  𝑚 ) ) | 
						
							| 144 | 113 143 | syl | ⊢ ( 𝑚  ∈  ω  →  ( 𝑘  ∈  𝑚  ↔  suc  𝑘  ∈  suc  𝑚 ) ) | 
						
							| 145 | 144 | biimpa | ⊢ ( ( 𝑚  ∈  ω  ∧  𝑘  ∈  𝑚 )  →  suc  𝑘  ∈  suc  𝑚 ) | 
						
							| 146 |  | eleq2 | ⊢ ( dom  𝑥  =  suc  𝑚  →  ( suc  𝑘  ∈  dom  𝑥  ↔  suc  𝑘  ∈  suc  𝑚 ) ) | 
						
							| 147 | 146 | biimparc | ⊢ ( ( suc  𝑘  ∈  suc  𝑚  ∧  dom  𝑥  =  suc  𝑚 )  →  suc  𝑘  ∈  dom  𝑥 ) | 
						
							| 148 | 145 69 147 | syl2an | ⊢ ( ( ( 𝑚  ∈  ω  ∧  𝑘  ∈  𝑚 )  ∧  𝑥 : suc  𝑚 ⟶ 𝐴 )  →  suc  𝑘  ∈  dom  𝑥 ) | 
						
							| 149 |  | funssfv | ⊢ ( ( Fun  ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } )  ∧  𝑥  ⊆  ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } )  ∧  suc  𝑘  ∈  dom  𝑥 )  →  ( ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } ) ‘ suc  𝑘 )  =  ( 𝑥 ‘ suc  𝑘 ) ) | 
						
							| 150 | 141 142 148 149 | syl3anc | ⊢ ( ( ( 𝑚  ∈  ω  ∧  𝑘  ∈  𝑚 )  ∧  𝑥 : suc  𝑚 ⟶ 𝐴 )  →  ( ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } ) ‘ suc  𝑘 )  =  ( 𝑥 ‘ suc  𝑘 ) ) | 
						
							| 151 | 150 | 3adant2 | ⊢ ( ( ( 𝑚  ∈  ω  ∧  𝑘  ∈  𝑚 )  ∧  𝑘  ∈  suc  𝑚  ∧  𝑥 : suc  𝑚 ⟶ 𝐴 )  →  ( ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } ) ‘ suc  𝑘 )  =  ( 𝑥 ‘ suc  𝑘 ) ) | 
						
							| 152 | 110 | 3adant2 | ⊢ ( ( 𝑚  ∈  ω  ∧  𝑘  ∈  suc  𝑚  ∧  𝑥 : suc  𝑚 ⟶ 𝐴 )  →  Fun  ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } ) ) | 
						
							| 153 | 111 | a1i | ⊢ ( ( 𝑚  ∈  ω  ∧  𝑘  ∈  suc  𝑚  ∧  𝑥 : suc  𝑚 ⟶ 𝐴 )  →  𝑥  ⊆  ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } ) ) | 
						
							| 154 |  | eleq2 | ⊢ ( dom  𝑥  =  suc  𝑚  →  ( 𝑘  ∈  dom  𝑥  ↔  𝑘  ∈  suc  𝑚 ) ) | 
						
							| 155 | 154 | biimparc | ⊢ ( ( 𝑘  ∈  suc  𝑚  ∧  dom  𝑥  =  suc  𝑚 )  →  𝑘  ∈  dom  𝑥 ) | 
						
							| 156 | 69 155 | sylan2 | ⊢ ( ( 𝑘  ∈  suc  𝑚  ∧  𝑥 : suc  𝑚 ⟶ 𝐴 )  →  𝑘  ∈  dom  𝑥 ) | 
						
							| 157 | 156 | 3adant1 | ⊢ ( ( 𝑚  ∈  ω  ∧  𝑘  ∈  suc  𝑚  ∧  𝑥 : suc  𝑚 ⟶ 𝐴 )  →  𝑘  ∈  dom  𝑥 ) | 
						
							| 158 |  | funssfv | ⊢ ( ( Fun  ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } )  ∧  𝑥  ⊆  ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } )  ∧  𝑘  ∈  dom  𝑥 )  →  ( ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } ) ‘ 𝑘 )  =  ( 𝑥 ‘ 𝑘 ) ) | 
						
							| 159 | 152 153 157 158 | syl3anc | ⊢ ( ( 𝑚  ∈  ω  ∧  𝑘  ∈  suc  𝑚  ∧  𝑥 : suc  𝑚 ⟶ 𝐴 )  →  ( ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } ) ‘ 𝑘 )  =  ( 𝑥 ‘ 𝑘 ) ) | 
						
							| 160 | 159 | 3adant1r | ⊢ ( ( ( 𝑚  ∈  ω  ∧  𝑘  ∈  𝑚 )  ∧  𝑘  ∈  suc  𝑚  ∧  𝑥 : suc  𝑚 ⟶ 𝐴 )  →  ( ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } ) ‘ 𝑘 )  =  ( 𝑥 ‘ 𝑘 ) ) | 
						
							| 161 | 160 | fveq2d | ⊢ ( ( ( 𝑚  ∈  ω  ∧  𝑘  ∈  𝑚 )  ∧  𝑘  ∈  suc  𝑚  ∧  𝑥 : suc  𝑚 ⟶ 𝐴 )  →  ( 𝐹 ‘ ( ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } ) ‘ 𝑘 ) )  =  ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) ) | 
						
							| 162 | 151 161 | eleq12d | ⊢ ( ( ( 𝑚  ∈  ω  ∧  𝑘  ∈  𝑚 )  ∧  𝑘  ∈  suc  𝑚  ∧  𝑥 : suc  𝑚 ⟶ 𝐴 )  →  ( ( ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } ) ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } ) ‘ 𝑘 ) )  ↔  ( 𝑥 ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) ) ) | 
						
							| 163 | 162 | 3adant2l | ⊢ ( ( ( 𝑚  ∈  ω  ∧  𝑘  ∈  𝑚 )  ∧  ( ∀ 𝑘  ∈  𝑚 ( 𝑥 ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) )  ∧  𝑘  ∈  suc  𝑚 )  ∧  𝑥 : suc  𝑚 ⟶ 𝐴 )  →  ( ( ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } ) ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } ) ‘ 𝑘 ) )  ↔  ( 𝑥 ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) ) ) | 
						
							| 164 | 140 163 | mpbird | ⊢ ( ( ( 𝑚  ∈  ω  ∧  𝑘  ∈  𝑚 )  ∧  ( ∀ 𝑘  ∈  𝑚 ( 𝑥 ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) )  ∧  𝑘  ∈  suc  𝑚 )  ∧  𝑥 : suc  𝑚 ⟶ 𝐴 )  →  ( ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } ) ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } ) ‘ 𝑘 ) ) ) | 
						
							| 165 | 164 | a1d | ⊢ ( ( ( 𝑚  ∈  ω  ∧  𝑘  ∈  𝑚 )  ∧  ( ∀ 𝑘  ∈  𝑚 ( 𝑥 ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) )  ∧  𝑘  ∈  suc  𝑚 )  ∧  𝑥 : suc  𝑚 ⟶ 𝐴 )  →  ( 𝑧  ∈  ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) )  →  ( ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } ) ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } ) ‘ 𝑘 ) ) ) ) | 
						
							| 166 | 165 | 3expib | ⊢ ( ( 𝑚  ∈  ω  ∧  𝑘  ∈  𝑚 )  →  ( ( ( ∀ 𝑘  ∈  𝑚 ( 𝑥 ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) )  ∧  𝑘  ∈  suc  𝑚 )  ∧  𝑥 : suc  𝑚 ⟶ 𝐴 )  →  ( 𝑧  ∈  ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) )  →  ( ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } ) ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } ) ‘ 𝑘 ) ) ) ) ) | 
						
							| 167 | 166 | expcom | ⊢ ( 𝑘  ∈  𝑚  →  ( 𝑚  ∈  ω  →  ( ( ( ∀ 𝑘  ∈  𝑚 ( 𝑥 ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) )  ∧  𝑘  ∈  suc  𝑚 )  ∧  𝑥 : suc  𝑚 ⟶ 𝐴 )  →  ( 𝑧  ∈  ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) )  →  ( ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } ) ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } ) ‘ 𝑘 ) ) ) ) ) ) | 
						
							| 168 | 110 | 3adant1 | ⊢ ( ( 𝑘  =  𝑚  ∧  𝑚  ∈  ω  ∧  𝑥 : suc  𝑚 ⟶ 𝐴 )  →  Fun  ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } ) ) | 
						
							| 169 |  | ssun2 | ⊢ { 〈 dom  𝑥 ,  𝑧 〉 }  ⊆  ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } ) | 
						
							| 170 | 169 | a1i | ⊢ ( ( 𝑘  =  𝑚  ∧  𝑚  ∈  ω  ∧  𝑥 : suc  𝑚 ⟶ 𝐴 )  →  { 〈 dom  𝑥 ,  𝑧 〉 }  ⊆  ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } ) ) | 
						
							| 171 |  | suceq | ⊢ ( 𝑘  =  𝑚  →  suc  𝑘  =  suc  𝑚 ) | 
						
							| 172 | 171 | eqeq2d | ⊢ ( 𝑘  =  𝑚  →  ( dom  𝑥  =  suc  𝑘  ↔  dom  𝑥  =  suc  𝑚 ) ) | 
						
							| 173 | 172 | biimpar | ⊢ ( ( 𝑘  =  𝑚  ∧  dom  𝑥  =  suc  𝑚 )  →  dom  𝑥  =  suc  𝑘 ) | 
						
							| 174 | 59 | snid | ⊢ dom  𝑥  ∈  { dom  𝑥 } | 
						
							| 175 | 174 103 | eleqtrri | ⊢ dom  𝑥  ∈  dom  { 〈 dom  𝑥 ,  𝑧 〉 } | 
						
							| 176 | 173 175 | eqeltrrdi | ⊢ ( ( 𝑘  =  𝑚  ∧  dom  𝑥  =  suc  𝑚 )  →  suc  𝑘  ∈  dom  { 〈 dom  𝑥 ,  𝑧 〉 } ) | 
						
							| 177 | 69 176 | sylan2 | ⊢ ( ( 𝑘  =  𝑚  ∧  𝑥 : suc  𝑚 ⟶ 𝐴 )  →  suc  𝑘  ∈  dom  { 〈 dom  𝑥 ,  𝑧 〉 } ) | 
						
							| 178 | 177 | 3adant2 | ⊢ ( ( 𝑘  =  𝑚  ∧  𝑚  ∈  ω  ∧  𝑥 : suc  𝑚 ⟶ 𝐴 )  →  suc  𝑘  ∈  dom  { 〈 dom  𝑥 ,  𝑧 〉 } ) | 
						
							| 179 |  | funssfv | ⊢ ( ( Fun  ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } )  ∧  { 〈 dom  𝑥 ,  𝑧 〉 }  ⊆  ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } )  ∧  suc  𝑘  ∈  dom  { 〈 dom  𝑥 ,  𝑧 〉 } )  →  ( ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } ) ‘ suc  𝑘 )  =  ( { 〈 dom  𝑥 ,  𝑧 〉 } ‘ suc  𝑘 ) ) | 
						
							| 180 | 168 170 178 179 | syl3anc | ⊢ ( ( 𝑘  =  𝑚  ∧  𝑚  ∈  ω  ∧  𝑥 : suc  𝑚 ⟶ 𝐴 )  →  ( ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } ) ‘ suc  𝑘 )  =  ( { 〈 dom  𝑥 ,  𝑧 〉 } ‘ suc  𝑘 ) ) | 
						
							| 181 | 173 | 3adant2 | ⊢ ( ( 𝑘  =  𝑚  ∧  𝑚  ∈  ω  ∧  dom  𝑥  =  suc  𝑚 )  →  dom  𝑥  =  suc  𝑘 ) | 
						
							| 182 |  | fveq2 | ⊢ ( dom  𝑥  =  suc  𝑘  →  ( { 〈 dom  𝑥 ,  𝑧 〉 } ‘ dom  𝑥 )  =  ( { 〈 dom  𝑥 ,  𝑧 〉 } ‘ suc  𝑘 ) ) | 
						
							| 183 | 59 60 | fvsn | ⊢ ( { 〈 dom  𝑥 ,  𝑧 〉 } ‘ dom  𝑥 )  =  𝑧 | 
						
							| 184 | 182 183 | eqtr3di | ⊢ ( dom  𝑥  =  suc  𝑘  →  ( { 〈 dom  𝑥 ,  𝑧 〉 } ‘ suc  𝑘 )  =  𝑧 ) | 
						
							| 185 | 181 184 | syl | ⊢ ( ( 𝑘  =  𝑚  ∧  𝑚  ∈  ω  ∧  dom  𝑥  =  suc  𝑚 )  →  ( { 〈 dom  𝑥 ,  𝑧 〉 } ‘ suc  𝑘 )  =  𝑧 ) | 
						
							| 186 | 69 185 | syl3an3 | ⊢ ( ( 𝑘  =  𝑚  ∧  𝑚  ∈  ω  ∧  𝑥 : suc  𝑚 ⟶ 𝐴 )  →  ( { 〈 dom  𝑥 ,  𝑧 〉 } ‘ suc  𝑘 )  =  𝑧 ) | 
						
							| 187 | 180 186 | eqtrd | ⊢ ( ( 𝑘  =  𝑚  ∧  𝑚  ∈  ω  ∧  𝑥 : suc  𝑚 ⟶ 𝐴 )  →  ( ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } ) ‘ suc  𝑘 )  =  𝑧 ) | 
						
							| 188 | 187 | 3expa | ⊢ ( ( ( 𝑘  =  𝑚  ∧  𝑚  ∈  ω )  ∧  𝑥 : suc  𝑚 ⟶ 𝐴 )  →  ( ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } ) ‘ suc  𝑘 )  =  𝑧 ) | 
						
							| 189 | 188 | 3adant2 | ⊢ ( ( ( 𝑘  =  𝑚  ∧  𝑚  ∈  ω )  ∧  𝑘  ∈  suc  𝑚  ∧  𝑥 : suc  𝑚 ⟶ 𝐴 )  →  ( ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } ) ‘ suc  𝑘 )  =  𝑧 ) | 
						
							| 190 | 159 | 3adant1l | ⊢ ( ( ( 𝑘  =  𝑚  ∧  𝑚  ∈  ω )  ∧  𝑘  ∈  suc  𝑚  ∧  𝑥 : suc  𝑚 ⟶ 𝐴 )  →  ( ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } ) ‘ 𝑘 )  =  ( 𝑥 ‘ 𝑘 ) ) | 
						
							| 191 |  | fveq2 | ⊢ ( 𝑘  =  𝑚  →  ( 𝑥 ‘ 𝑘 )  =  ( 𝑥 ‘ 𝑚 ) ) | 
						
							| 192 | 191 | adantr | ⊢ ( ( 𝑘  =  𝑚  ∧  𝑚  ∈  ω )  →  ( 𝑥 ‘ 𝑘 )  =  ( 𝑥 ‘ 𝑚 ) ) | 
						
							| 193 | 192 | 3ad2ant1 | ⊢ ( ( ( 𝑘  =  𝑚  ∧  𝑚  ∈  ω )  ∧  𝑘  ∈  suc  𝑚  ∧  𝑥 : suc  𝑚 ⟶ 𝐴 )  →  ( 𝑥 ‘ 𝑘 )  =  ( 𝑥 ‘ 𝑚 ) ) | 
						
							| 194 | 190 193 | eqtrd | ⊢ ( ( ( 𝑘  =  𝑚  ∧  𝑚  ∈  ω )  ∧  𝑘  ∈  suc  𝑚  ∧  𝑥 : suc  𝑚 ⟶ 𝐴 )  →  ( ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } ) ‘ 𝑘 )  =  ( 𝑥 ‘ 𝑚 ) ) | 
						
							| 195 | 194 | fveq2d | ⊢ ( ( ( 𝑘  =  𝑚  ∧  𝑚  ∈  ω )  ∧  𝑘  ∈  suc  𝑚  ∧  𝑥 : suc  𝑚 ⟶ 𝐴 )  →  ( 𝐹 ‘ ( ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } ) ‘ 𝑘 ) )  =  ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) ) ) | 
						
							| 196 | 189 195 | eleq12d | ⊢ ( ( ( 𝑘  =  𝑚  ∧  𝑚  ∈  ω )  ∧  𝑘  ∈  suc  𝑚  ∧  𝑥 : suc  𝑚 ⟶ 𝐴 )  →  ( ( ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } ) ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } ) ‘ 𝑘 ) )  ↔  𝑧  ∈  ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) ) ) ) | 
						
							| 197 | 196 | 3adant2l | ⊢ ( ( ( 𝑘  =  𝑚  ∧  𝑚  ∈  ω )  ∧  ( ∀ 𝑘  ∈  𝑚 ( 𝑥 ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) )  ∧  𝑘  ∈  suc  𝑚 )  ∧  𝑥 : suc  𝑚 ⟶ 𝐴 )  →  ( ( ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } ) ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } ) ‘ 𝑘 ) )  ↔  𝑧  ∈  ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) ) ) ) | 
						
							| 198 | 197 | biimprd | ⊢ ( ( ( 𝑘  =  𝑚  ∧  𝑚  ∈  ω )  ∧  ( ∀ 𝑘  ∈  𝑚 ( 𝑥 ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) )  ∧  𝑘  ∈  suc  𝑚 )  ∧  𝑥 : suc  𝑚 ⟶ 𝐴 )  →  ( 𝑧  ∈  ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) )  →  ( ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } ) ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } ) ‘ 𝑘 ) ) ) ) | 
						
							| 199 | 198 | 3expib | ⊢ ( ( 𝑘  =  𝑚  ∧  𝑚  ∈  ω )  →  ( ( ( ∀ 𝑘  ∈  𝑚 ( 𝑥 ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) )  ∧  𝑘  ∈  suc  𝑚 )  ∧  𝑥 : suc  𝑚 ⟶ 𝐴 )  →  ( 𝑧  ∈  ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) )  →  ( ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } ) ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } ) ‘ 𝑘 ) ) ) ) ) | 
						
							| 200 | 199 | ex | ⊢ ( 𝑘  =  𝑚  →  ( 𝑚  ∈  ω  →  ( ( ( ∀ 𝑘  ∈  𝑚 ( 𝑥 ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) )  ∧  𝑘  ∈  suc  𝑚 )  ∧  𝑥 : suc  𝑚 ⟶ 𝐴 )  →  ( 𝑧  ∈  ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) )  →  ( ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } ) ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } ) ‘ 𝑘 ) ) ) ) ) ) | 
						
							| 201 | 167 200 | jaoi | ⊢ ( ( 𝑘  ∈  𝑚  ∨  𝑘  =  𝑚 )  →  ( 𝑚  ∈  ω  →  ( ( ( ∀ 𝑘  ∈  𝑚 ( 𝑥 ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) )  ∧  𝑘  ∈  suc  𝑚 )  ∧  𝑥 : suc  𝑚 ⟶ 𝐴 )  →  ( 𝑧  ∈  ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) )  →  ( ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } ) ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } ) ‘ 𝑘 ) ) ) ) ) ) | 
						
							| 202 | 136 201 | syl | ⊢ ( 𝑘  ∈  suc  𝑚  →  ( 𝑚  ∈  ω  →  ( ( ( ∀ 𝑘  ∈  𝑚 ( 𝑥 ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) )  ∧  𝑘  ∈  suc  𝑚 )  ∧  𝑥 : suc  𝑚 ⟶ 𝐴 )  →  ( 𝑧  ∈  ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) )  →  ( ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } ) ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } ) ‘ 𝑘 ) ) ) ) ) ) | 
						
							| 203 | 202 | com3r | ⊢ ( ( ( ∀ 𝑘  ∈  𝑚 ( 𝑥 ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) )  ∧  𝑘  ∈  suc  𝑚 )  ∧  𝑥 : suc  𝑚 ⟶ 𝐴 )  →  ( 𝑘  ∈  suc  𝑚  →  ( 𝑚  ∈  ω  →  ( 𝑧  ∈  ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) )  →  ( ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } ) ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } ) ‘ 𝑘 ) ) ) ) ) ) | 
						
							| 204 | 135 203 | mpd | ⊢ ( ( ( ∀ 𝑘  ∈  𝑚 ( 𝑥 ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) )  ∧  𝑘  ∈  suc  𝑚 )  ∧  𝑥 : suc  𝑚 ⟶ 𝐴 )  →  ( 𝑚  ∈  ω  →  ( 𝑧  ∈  ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) )  →  ( ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } ) ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } ) ‘ 𝑘 ) ) ) ) ) | 
						
							| 205 | 204 | ex | ⊢ ( ( ∀ 𝑘  ∈  𝑚 ( 𝑥 ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) )  ∧  𝑘  ∈  suc  𝑚 )  →  ( 𝑥 : suc  𝑚 ⟶ 𝐴  →  ( 𝑚  ∈  ω  →  ( 𝑧  ∈  ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) )  →  ( ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } ) ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } ) ‘ 𝑘 ) ) ) ) ) ) | 
						
							| 206 | 205 | expcom | ⊢ ( 𝑘  ∈  suc  𝑚  →  ( ∀ 𝑘  ∈  𝑚 ( 𝑥 ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) )  →  ( 𝑥 : suc  𝑚 ⟶ 𝐴  →  ( 𝑚  ∈  ω  →  ( 𝑧  ∈  ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) )  →  ( ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } ) ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } ) ‘ 𝑘 ) ) ) ) ) ) ) | 
						
							| 207 | 206 | 3impd | ⊢ ( 𝑘  ∈  suc  𝑚  →  ( ( ∀ 𝑘  ∈  𝑚 ( 𝑥 ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) )  ∧  𝑥 : suc  𝑚 ⟶ 𝐴  ∧  𝑚  ∈  ω )  →  ( 𝑧  ∈  ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) )  →  ( ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } ) ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } ) ‘ 𝑘 ) ) ) ) ) | 
						
							| 208 | 207 | impd | ⊢ ( 𝑘  ∈  suc  𝑚  →  ( ( ( ∀ 𝑘  ∈  𝑚 ( 𝑥 ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) )  ∧  𝑥 : suc  𝑚 ⟶ 𝐴  ∧  𝑚  ∈  ω )  ∧  𝑧  ∈  ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) ) )  →  ( ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } ) ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } ) ‘ 𝑘 ) ) ) ) | 
						
							| 209 | 208 | com12 | ⊢ ( ( ( ∀ 𝑘  ∈  𝑚 ( 𝑥 ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) )  ∧  𝑥 : suc  𝑚 ⟶ 𝐴  ∧  𝑚  ∈  ω )  ∧  𝑧  ∈  ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) ) )  →  ( 𝑘  ∈  suc  𝑚  →  ( ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } ) ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } ) ‘ 𝑘 ) ) ) ) | 
						
							| 210 | 209 | 3adant3 | ⊢ ( ( ( ∀ 𝑘  ∈  𝑚 ( 𝑥 ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) )  ∧  𝑥 : suc  𝑚 ⟶ 𝐴  ∧  𝑚  ∈  ω )  ∧  𝑧  ∈  ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ( 𝑥 ‘ ∅ )  =  𝐶 ) )  →  ( 𝑘  ∈  suc  𝑚  →  ( ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } ) ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } ) ‘ 𝑘 ) ) ) ) | 
						
							| 211 | 134 210 | ralrimi | ⊢ ( ( ( ∀ 𝑘  ∈  𝑚 ( 𝑥 ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) )  ∧  𝑥 : suc  𝑚 ⟶ 𝐴  ∧  𝑚  ∈  ω )  ∧  𝑧  ∈  ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ( 𝑥 ‘ ∅ )  =  𝐶 ) )  →  ∀ 𝑘  ∈  suc  𝑚 ( ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } ) ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } ) ‘ 𝑘 ) ) ) | 
						
							| 212 |  | suceq | ⊢ ( 𝑝  =  suc  𝑚  →  suc  𝑝  =  suc  suc  𝑚 ) | 
						
							| 213 | 212 | feq2d | ⊢ ( 𝑝  =  suc  𝑚  →  ( ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } ) : suc  𝑝 ⟶ 𝐴  ↔  ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } ) : suc  suc  𝑚 ⟶ 𝐴 ) ) | 
						
							| 214 |  | raleq | ⊢ ( 𝑝  =  suc  𝑚  →  ( ∀ 𝑘  ∈  𝑝 ( ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } ) ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } ) ‘ 𝑘 ) )  ↔  ∀ 𝑘  ∈  suc  𝑚 ( ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } ) ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } ) ‘ 𝑘 ) ) ) ) | 
						
							| 215 | 213 214 | 3anbi13d | ⊢ ( 𝑝  =  suc  𝑚  →  ( ( ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } ) : suc  𝑝 ⟶ 𝐴  ∧  ( ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } ) ‘ ∅ )  =  𝐶  ∧  ∀ 𝑘  ∈  𝑝 ( ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } ) ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } ) ‘ 𝑘 ) ) )  ↔  ( ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } ) : suc  suc  𝑚 ⟶ 𝐴  ∧  ( ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } ) ‘ ∅ )  =  𝐶  ∧  ∀ 𝑘  ∈  suc  𝑚 ( ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } ) ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } ) ‘ 𝑘 ) ) ) ) ) | 
						
							| 216 | 215 | rspcev | ⊢ ( ( suc  𝑚  ∈  ω  ∧  ( ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } ) : suc  suc  𝑚 ⟶ 𝐴  ∧  ( ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } ) ‘ ∅ )  =  𝐶  ∧  ∀ 𝑘  ∈  suc  𝑚 ( ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } ) ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } ) ‘ 𝑘 ) ) ) )  →  ∃ 𝑝  ∈  ω ( ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } ) : suc  𝑝 ⟶ 𝐴  ∧  ( ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } ) ‘ ∅ )  =  𝐶  ∧  ∀ 𝑘  ∈  𝑝 ( ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } ) ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } ) ‘ 𝑘 ) ) ) ) | 
						
							| 217 | 57 98 127 211 216 | syl13anc | ⊢ ( ( ( ∀ 𝑘  ∈  𝑚 ( 𝑥 ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) )  ∧  𝑥 : suc  𝑚 ⟶ 𝐴  ∧  𝑚  ∈  ω )  ∧  𝑧  ∈  ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ( 𝑥 ‘ ∅ )  =  𝐶 ) )  →  ∃ 𝑝  ∈  ω ( ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } ) : suc  𝑝 ⟶ 𝐴  ∧  ( ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } ) ‘ ∅ )  =  𝐶  ∧  ∀ 𝑘  ∈  𝑝 ( ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } ) ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } ) ‘ 𝑘 ) ) ) ) | 
						
							| 218 |  | snex | ⊢ { 〈 dom  𝑥 ,  𝑧 〉 }  ∈  V | 
						
							| 219 | 33 218 | unex | ⊢ ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } )  ∈  V | 
						
							| 220 | 1 2 219 | axdc3lem3 | ⊢ ( ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } )  ∈  𝑆  ↔  ∃ 𝑝  ∈  ω ( ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } ) : suc  𝑝 ⟶ 𝐴  ∧  ( ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } ) ‘ ∅ )  =  𝐶  ∧  ∀ 𝑘  ∈  𝑝 ( ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } ) ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } ) ‘ 𝑘 ) ) ) ) | 
						
							| 221 | 217 220 | sylibr | ⊢ ( ( ( ∀ 𝑘  ∈  𝑚 ( 𝑥 ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) )  ∧  𝑥 : suc  𝑚 ⟶ 𝐴  ∧  𝑚  ∈  ω )  ∧  𝑧  ∈  ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ( 𝑥 ‘ ∅ )  =  𝐶 ) )  →  ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } )  ∈  𝑆 ) | 
						
							| 222 | 221 | 3coml | ⊢ ( ( 𝑧  ∈  ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ( 𝑥 ‘ ∅ )  =  𝐶 )  ∧  ( ∀ 𝑘  ∈  𝑚 ( 𝑥 ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) )  ∧  𝑥 : suc  𝑚 ⟶ 𝐴  ∧  𝑚  ∈  ω ) )  →  ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } )  ∈  𝑆 ) | 
						
							| 223 | 222 | 3exp | ⊢ ( 𝑧  ∈  ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) )  →  ( ( 𝑧  ∈  𝐴  ∧  ( 𝑥 ‘ ∅ )  =  𝐶 )  →  ( ( ∀ 𝑘  ∈  𝑚 ( 𝑥 ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) )  ∧  𝑥 : suc  𝑚 ⟶ 𝐴  ∧  𝑚  ∈  ω )  →  ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } )  ∈  𝑆 ) ) ) | 
						
							| 224 | 223 | expd | ⊢ ( 𝑧  ∈  ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) )  →  ( 𝑧  ∈  𝐴  →  ( ( 𝑥 ‘ ∅ )  =  𝐶  →  ( ( ∀ 𝑘  ∈  𝑚 ( 𝑥 ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) )  ∧  𝑥 : suc  𝑚 ⟶ 𝐴  ∧  𝑚  ∈  ω )  →  ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } )  ∈  𝑆 ) ) ) ) | 
						
							| 225 | 54 224 | sylcom | ⊢ ( ( 𝐹 : 𝐴 ⟶ ( 𝒫  𝐴  ∖  { ∅ } )  ∧  𝑥 : suc  𝑚 ⟶ 𝐴 )  →  ( 𝑧  ∈  ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) )  →  ( ( 𝑥 ‘ ∅ )  =  𝐶  →  ( ( ∀ 𝑘  ∈  𝑚 ( 𝑥 ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) )  ∧  𝑥 : suc  𝑚 ⟶ 𝐴  ∧  𝑚  ∈  ω )  →  ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } )  ∈  𝑆 ) ) ) ) | 
						
							| 226 | 225 | 3impd | ⊢ ( ( 𝐹 : 𝐴 ⟶ ( 𝒫  𝐴  ∖  { ∅ } )  ∧  𝑥 : suc  𝑚 ⟶ 𝐴 )  →  ( ( 𝑧  ∈  ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) )  ∧  ( 𝑥 ‘ ∅ )  =  𝐶  ∧  ( ∀ 𝑘  ∈  𝑚 ( 𝑥 ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) )  ∧  𝑥 : suc  𝑚 ⟶ 𝐴  ∧  𝑚  ∈  ω ) )  →  ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } )  ∈  𝑆 ) ) | 
						
							| 227 | 226 | ex | ⊢ ( 𝐹 : 𝐴 ⟶ ( 𝒫  𝐴  ∖  { ∅ } )  →  ( 𝑥 : suc  𝑚 ⟶ 𝐴  →  ( ( 𝑧  ∈  ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) )  ∧  ( 𝑥 ‘ ∅ )  =  𝐶  ∧  ( ∀ 𝑘  ∈  𝑚 ( 𝑥 ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) )  ∧  𝑥 : suc  𝑚 ⟶ 𝐴  ∧  𝑚  ∈  ω ) )  →  ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } )  ∈  𝑆 ) ) ) | 
						
							| 228 | 227 | com23 | ⊢ ( 𝐹 : 𝐴 ⟶ ( 𝒫  𝐴  ∖  { ∅ } )  →  ( ( 𝑧  ∈  ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) )  ∧  ( 𝑥 ‘ ∅ )  =  𝐶  ∧  ( ∀ 𝑘  ∈  𝑚 ( 𝑥 ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) )  ∧  𝑥 : suc  𝑚 ⟶ 𝐴  ∧  𝑚  ∈  ω ) )  →  ( 𝑥 : suc  𝑚 ⟶ 𝐴  →  ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } )  ∈  𝑆 ) ) ) | 
						
							| 229 | 50 228 | mpdi | ⊢ ( 𝐹 : 𝐴 ⟶ ( 𝒫  𝐴  ∖  { ∅ } )  →  ( ( 𝑧  ∈  ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) )  ∧  ( 𝑥 ‘ ∅ )  =  𝐶  ∧  ( ∀ 𝑘  ∈  𝑚 ( 𝑥 ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) )  ∧  𝑥 : suc  𝑚 ⟶ 𝐴  ∧  𝑚  ∈  ω ) )  →  ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } )  ∈  𝑆 ) ) | 
						
							| 230 | 229 | imp | ⊢ ( ( 𝐹 : 𝐴 ⟶ ( 𝒫  𝐴  ∖  { ∅ } )  ∧  ( 𝑧  ∈  ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) )  ∧  ( 𝑥 ‘ ∅ )  =  𝐶  ∧  ( ∀ 𝑘  ∈  𝑚 ( 𝑥 ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) )  ∧  𝑥 : suc  𝑚 ⟶ 𝐴  ∧  𝑚  ∈  ω ) ) )  →  ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } )  ∈  𝑆 ) | 
						
							| 231 |  | resundir | ⊢ ( ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } )  ↾  dom  𝑥 )  =  ( ( 𝑥  ↾  dom  𝑥 )  ∪  ( { 〈 dom  𝑥 ,  𝑧 〉 }  ↾  dom  𝑥 ) ) | 
						
							| 232 |  | frel | ⊢ ( 𝑥 : suc  𝑚 ⟶ 𝐴  →  Rel  𝑥 ) | 
						
							| 233 |  | resdm | ⊢ ( Rel  𝑥  →  ( 𝑥  ↾  dom  𝑥 )  =  𝑥 ) | 
						
							| 234 | 232 233 | syl | ⊢ ( 𝑥 : suc  𝑚 ⟶ 𝐴  →  ( 𝑥  ↾  dom  𝑥 )  =  𝑥 ) | 
						
							| 235 | 234 | adantl | ⊢ ( ( 𝑚  ∈  ω  ∧  𝑥 : suc  𝑚 ⟶ 𝐴 )  →  ( 𝑥  ↾  dom  𝑥 )  =  𝑥 ) | 
						
							| 236 | 69 73 | sylan2 | ⊢ ( ( 𝑚  ∈  ω  ∧  𝑥 : suc  𝑚 ⟶ 𝐴 )  →  dom  𝑥  ∈  ω ) | 
						
							| 237 | 74 75 | syl | ⊢ ( dom  𝑥  ∈  ω  →  ¬  dom  𝑥  ∈  dom  𝑥 ) | 
						
							| 238 |  | incom | ⊢ ( { dom  𝑥 }  ∩  dom  𝑥 )  =  ( dom  𝑥  ∩  { dom  𝑥 } ) | 
						
							| 239 | 238 | eqeq1i | ⊢ ( ( { dom  𝑥 }  ∩  dom  𝑥 )  =  ∅  ↔  ( dom  𝑥  ∩  { dom  𝑥 } )  =  ∅ ) | 
						
							| 240 | 59 60 | fnsn | ⊢ { 〈 dom  𝑥 ,  𝑧 〉 }  Fn  { dom  𝑥 } | 
						
							| 241 |  | fnresdisj | ⊢ ( { 〈 dom  𝑥 ,  𝑧 〉 }  Fn  { dom  𝑥 }  →  ( ( { dom  𝑥 }  ∩  dom  𝑥 )  =  ∅  ↔  ( { 〈 dom  𝑥 ,  𝑧 〉 }  ↾  dom  𝑥 )  =  ∅ ) ) | 
						
							| 242 | 240 241 | ax-mp | ⊢ ( ( { dom  𝑥 }  ∩  dom  𝑥 )  =  ∅  ↔  ( { 〈 dom  𝑥 ,  𝑧 〉 }  ↾  dom  𝑥 )  =  ∅ ) | 
						
							| 243 | 239 242 105 | 3bitr3ri | ⊢ ( ¬  dom  𝑥  ∈  dom  𝑥  ↔  ( { 〈 dom  𝑥 ,  𝑧 〉 }  ↾  dom  𝑥 )  =  ∅ ) | 
						
							| 244 | 237 243 | sylib | ⊢ ( dom  𝑥  ∈  ω  →  ( { 〈 dom  𝑥 ,  𝑧 〉 }  ↾  dom  𝑥 )  =  ∅ ) | 
						
							| 245 | 236 244 | syl | ⊢ ( ( 𝑚  ∈  ω  ∧  𝑥 : suc  𝑚 ⟶ 𝐴 )  →  ( { 〈 dom  𝑥 ,  𝑧 〉 }  ↾  dom  𝑥 )  =  ∅ ) | 
						
							| 246 | 235 245 | uneq12d | ⊢ ( ( 𝑚  ∈  ω  ∧  𝑥 : suc  𝑚 ⟶ 𝐴 )  →  ( ( 𝑥  ↾  dom  𝑥 )  ∪  ( { 〈 dom  𝑥 ,  𝑧 〉 }  ↾  dom  𝑥 ) )  =  ( 𝑥  ∪  ∅ ) ) | 
						
							| 247 |  | un0 | ⊢ ( 𝑥  ∪  ∅ )  =  𝑥 | 
						
							| 248 | 246 247 | eqtrdi | ⊢ ( ( 𝑚  ∈  ω  ∧  𝑥 : suc  𝑚 ⟶ 𝐴 )  →  ( ( 𝑥  ↾  dom  𝑥 )  ∪  ( { 〈 dom  𝑥 ,  𝑧 〉 }  ↾  dom  𝑥 ) )  =  𝑥 ) | 
						
							| 249 | 231 248 | eqtrid | ⊢ ( ( 𝑚  ∈  ω  ∧  𝑥 : suc  𝑚 ⟶ 𝐴 )  →  ( ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } )  ↾  dom  𝑥 )  =  𝑥 ) | 
						
							| 250 | 249 | ancoms | ⊢ ( ( 𝑥 : suc  𝑚 ⟶ 𝐴  ∧  𝑚  ∈  ω )  →  ( ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } )  ↾  dom  𝑥 )  =  𝑥 ) | 
						
							| 251 | 250 | 3adant1 | ⊢ ( ( ∀ 𝑘  ∈  𝑚 ( 𝑥 ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) )  ∧  𝑥 : suc  𝑚 ⟶ 𝐴  ∧  𝑚  ∈  ω )  →  ( ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } )  ↾  dom  𝑥 )  =  𝑥 ) | 
						
							| 252 | 251 | 3ad2ant3 | ⊢ ( ( 𝑧  ∈  ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) )  ∧  ( 𝑥 ‘ ∅ )  =  𝐶  ∧  ( ∀ 𝑘  ∈  𝑚 ( 𝑥 ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) )  ∧  𝑥 : suc  𝑚 ⟶ 𝐴  ∧  𝑚  ∈  ω ) )  →  ( ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } )  ↾  dom  𝑥 )  =  𝑥 ) | 
						
							| 253 | 252 | adantl | ⊢ ( ( 𝐹 : 𝐴 ⟶ ( 𝒫  𝐴  ∖  { ∅ } )  ∧  ( 𝑧  ∈  ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) )  ∧  ( 𝑥 ‘ ∅ )  =  𝐶  ∧  ( ∀ 𝑘  ∈  𝑚 ( 𝑥 ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) )  ∧  𝑥 : suc  𝑚 ⟶ 𝐴  ∧  𝑚  ∈  ω ) ) )  →  ( ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } )  ↾  dom  𝑥 )  =  𝑥 ) | 
						
							| 254 | 103 | uneq2i | ⊢ ( dom  𝑥  ∪  dom  { 〈 dom  𝑥 ,  𝑧 〉 } )  =  ( dom  𝑥  ∪  { dom  𝑥 } ) | 
						
							| 255 |  | dmun | ⊢ dom  ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } )  =  ( dom  𝑥  ∪  dom  { 〈 dom  𝑥 ,  𝑧 〉 } ) | 
						
							| 256 |  | df-suc | ⊢ suc  dom  𝑥  =  ( dom  𝑥  ∪  { dom  𝑥 } ) | 
						
							| 257 | 254 255 256 | 3eqtr4i | ⊢ dom  ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } )  =  suc  dom  𝑥 | 
						
							| 258 | 253 257 | jctil | ⊢ ( ( 𝐹 : 𝐴 ⟶ ( 𝒫  𝐴  ∖  { ∅ } )  ∧  ( 𝑧  ∈  ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) )  ∧  ( 𝑥 ‘ ∅ )  =  𝐶  ∧  ( ∀ 𝑘  ∈  𝑚 ( 𝑥 ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) )  ∧  𝑥 : suc  𝑚 ⟶ 𝐴  ∧  𝑚  ∈  ω ) ) )  →  ( dom  ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } )  =  suc  dom  𝑥  ∧  ( ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } )  ↾  dom  𝑥 )  =  𝑥 ) ) | 
						
							| 259 |  | dmeq | ⊢ ( 𝑦  =  ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } )  →  dom  𝑦  =  dom  ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } ) ) | 
						
							| 260 | 259 | eqeq1d | ⊢ ( 𝑦  =  ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } )  →  ( dom  𝑦  =  suc  dom  𝑥  ↔  dom  ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } )  =  suc  dom  𝑥 ) ) | 
						
							| 261 |  | reseq1 | ⊢ ( 𝑦  =  ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } )  →  ( 𝑦  ↾  dom  𝑥 )  =  ( ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } )  ↾  dom  𝑥 ) ) | 
						
							| 262 | 261 | eqeq1d | ⊢ ( 𝑦  =  ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } )  →  ( ( 𝑦  ↾  dom  𝑥 )  =  𝑥  ↔  ( ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } )  ↾  dom  𝑥 )  =  𝑥 ) ) | 
						
							| 263 | 260 262 | anbi12d | ⊢ ( 𝑦  =  ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } )  →  ( ( dom  𝑦  =  suc  dom  𝑥  ∧  ( 𝑦  ↾  dom  𝑥 )  =  𝑥 )  ↔  ( dom  ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } )  =  suc  dom  𝑥  ∧  ( ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } )  ↾  dom  𝑥 )  =  𝑥 ) ) ) | 
						
							| 264 | 263 | rspcev | ⊢ ( ( ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } )  ∈  𝑆  ∧  ( dom  ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } )  =  suc  dom  𝑥  ∧  ( ( 𝑥  ∪  { 〈 dom  𝑥 ,  𝑧 〉 } )  ↾  dom  𝑥 )  =  𝑥 ) )  →  ∃ 𝑦  ∈  𝑆 ( dom  𝑦  =  suc  dom  𝑥  ∧  ( 𝑦  ↾  dom  𝑥 )  =  𝑥 ) ) | 
						
							| 265 | 230 258 264 | syl2anc | ⊢ ( ( 𝐹 : 𝐴 ⟶ ( 𝒫  𝐴  ∖  { ∅ } )  ∧  ( 𝑧  ∈  ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) )  ∧  ( 𝑥 ‘ ∅ )  =  𝐶  ∧  ( ∀ 𝑘  ∈  𝑚 ( 𝑥 ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) )  ∧  𝑥 : suc  𝑚 ⟶ 𝐴  ∧  𝑚  ∈  ω ) ) )  →  ∃ 𝑦  ∈  𝑆 ( dom  𝑦  =  suc  dom  𝑥  ∧  ( 𝑦  ↾  dom  𝑥 )  =  𝑥 ) ) | 
						
							| 266 | 265 | 3exp2 | ⊢ ( 𝐹 : 𝐴 ⟶ ( 𝒫  𝐴  ∖  { ∅ } )  →  ( 𝑧  ∈  ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) )  →  ( ( 𝑥 ‘ ∅ )  =  𝐶  →  ( ( ∀ 𝑘  ∈  𝑚 ( 𝑥 ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) )  ∧  𝑥 : suc  𝑚 ⟶ 𝐴  ∧  𝑚  ∈  ω )  →  ∃ 𝑦  ∈  𝑆 ( dom  𝑦  =  suc  dom  𝑥  ∧  ( 𝑦  ↾  dom  𝑥 )  =  𝑥 ) ) ) ) ) | 
						
							| 267 | 266 | exlimdv | ⊢ ( 𝐹 : 𝐴 ⟶ ( 𝒫  𝐴  ∖  { ∅ } )  →  ( ∃ 𝑧 𝑧  ∈  ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) )  →  ( ( 𝑥 ‘ ∅ )  =  𝐶  →  ( ( ∀ 𝑘  ∈  𝑚 ( 𝑥 ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) )  ∧  𝑥 : suc  𝑚 ⟶ 𝐴  ∧  𝑚  ∈  ω )  →  ∃ 𝑦  ∈  𝑆 ( dom  𝑦  =  suc  dom  𝑥  ∧  ( 𝑦  ↾  dom  𝑥 )  =  𝑥 ) ) ) ) ) | 
						
							| 268 | 267 | adantr | ⊢ ( ( 𝐹 : 𝐴 ⟶ ( 𝒫  𝐴  ∖  { ∅ } )  ∧  𝑥 : suc  𝑚 ⟶ 𝐴 )  →  ( ∃ 𝑧 𝑧  ∈  ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) )  →  ( ( 𝑥 ‘ ∅ )  =  𝐶  →  ( ( ∀ 𝑘  ∈  𝑚 ( 𝑥 ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) )  ∧  𝑥 : suc  𝑚 ⟶ 𝐴  ∧  𝑚  ∈  ω )  →  ∃ 𝑦  ∈  𝑆 ( dom  𝑦  =  suc  dom  𝑥  ∧  ( 𝑦  ↾  dom  𝑥 )  =  𝑥 ) ) ) ) ) | 
						
							| 269 | 49 268 | mpd | ⊢ ( ( 𝐹 : 𝐴 ⟶ ( 𝒫  𝐴  ∖  { ∅ } )  ∧  𝑥 : suc  𝑚 ⟶ 𝐴 )  →  ( ( 𝑥 ‘ ∅ )  =  𝐶  →  ( ( ∀ 𝑘  ∈  𝑚 ( 𝑥 ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) )  ∧  𝑥 : suc  𝑚 ⟶ 𝐴  ∧  𝑚  ∈  ω )  →  ∃ 𝑦  ∈  𝑆 ( dom  𝑦  =  suc  dom  𝑥  ∧  ( 𝑦  ↾  dom  𝑥 )  =  𝑥 ) ) ) ) | 
						
							| 270 | 269 | com3r | ⊢ ( ( ∀ 𝑘  ∈  𝑚 ( 𝑥 ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) )  ∧  𝑥 : suc  𝑚 ⟶ 𝐴  ∧  𝑚  ∈  ω )  →  ( ( 𝐹 : 𝐴 ⟶ ( 𝒫  𝐴  ∖  { ∅ } )  ∧  𝑥 : suc  𝑚 ⟶ 𝐴 )  →  ( ( 𝑥 ‘ ∅ )  =  𝐶  →  ∃ 𝑦  ∈  𝑆 ( dom  𝑦  =  suc  dom  𝑥  ∧  ( 𝑦  ↾  dom  𝑥 )  =  𝑥 ) ) ) ) | 
						
							| 271 | 35 270 | mpan2d | ⊢ ( ( ∀ 𝑘  ∈  𝑚 ( 𝑥 ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) )  ∧  𝑥 : suc  𝑚 ⟶ 𝐴  ∧  𝑚  ∈  ω )  →  ( 𝐹 : 𝐴 ⟶ ( 𝒫  𝐴  ∖  { ∅ } )  →  ( ( 𝑥 ‘ ∅ )  =  𝐶  →  ∃ 𝑦  ∈  𝑆 ( dom  𝑦  =  suc  dom  𝑥  ∧  ( 𝑦  ↾  dom  𝑥 )  =  𝑥 ) ) ) ) | 
						
							| 272 | 271 | com3r | ⊢ ( ( 𝑥 ‘ ∅ )  =  𝐶  →  ( ( ∀ 𝑘  ∈  𝑚 ( 𝑥 ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) )  ∧  𝑥 : suc  𝑚 ⟶ 𝐴  ∧  𝑚  ∈  ω )  →  ( 𝐹 : 𝐴 ⟶ ( 𝒫  𝐴  ∖  { ∅ } )  →  ∃ 𝑦  ∈  𝑆 ( dom  𝑦  =  suc  dom  𝑥  ∧  ( 𝑦  ↾  dom  𝑥 )  =  𝑥 ) ) ) ) | 
						
							| 273 | 272 | 3expd | ⊢ ( ( 𝑥 ‘ ∅ )  =  𝐶  →  ( ∀ 𝑘  ∈  𝑚 ( 𝑥 ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) )  →  ( 𝑥 : suc  𝑚 ⟶ 𝐴  →  ( 𝑚  ∈  ω  →  ( 𝐹 : 𝐴 ⟶ ( 𝒫  𝐴  ∖  { ∅ } )  →  ∃ 𝑦  ∈  𝑆 ( dom  𝑦  =  suc  dom  𝑥  ∧  ( 𝑦  ↾  dom  𝑥 )  =  𝑥 ) ) ) ) ) ) | 
						
							| 274 | 273 | com3r | ⊢ ( 𝑥 : suc  𝑚 ⟶ 𝐴  →  ( ( 𝑥 ‘ ∅ )  =  𝐶  →  ( ∀ 𝑘  ∈  𝑚 ( 𝑥 ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) )  →  ( 𝑚  ∈  ω  →  ( 𝐹 : 𝐴 ⟶ ( 𝒫  𝐴  ∖  { ∅ } )  →  ∃ 𝑦  ∈  𝑆 ( dom  𝑦  =  suc  dom  𝑥  ∧  ( 𝑦  ↾  dom  𝑥 )  =  𝑥 ) ) ) ) ) ) | 
						
							| 275 | 274 | 3imp | ⊢ ( ( 𝑥 : suc  𝑚 ⟶ 𝐴  ∧  ( 𝑥 ‘ ∅ )  =  𝐶  ∧  ∀ 𝑘  ∈  𝑚 ( 𝑥 ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) )  →  ( 𝑚  ∈  ω  →  ( 𝐹 : 𝐴 ⟶ ( 𝒫  𝐴  ∖  { ∅ } )  →  ∃ 𝑦  ∈  𝑆 ( dom  𝑦  =  suc  dom  𝑥  ∧  ( 𝑦  ↾  dom  𝑥 )  =  𝑥 ) ) ) ) | 
						
							| 276 | 275 | com12 | ⊢ ( 𝑚  ∈  ω  →  ( ( 𝑥 : suc  𝑚 ⟶ 𝐴  ∧  ( 𝑥 ‘ ∅ )  =  𝐶  ∧  ∀ 𝑘  ∈  𝑚 ( 𝑥 ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) )  →  ( 𝐹 : 𝐴 ⟶ ( 𝒫  𝐴  ∖  { ∅ } )  →  ∃ 𝑦  ∈  𝑆 ( dom  𝑦  =  suc  dom  𝑥  ∧  ( 𝑦  ↾  dom  𝑥 )  =  𝑥 ) ) ) ) | 
						
							| 277 | 276 | rexlimiv | ⊢ ( ∃ 𝑚  ∈  ω ( 𝑥 : suc  𝑚 ⟶ 𝐴  ∧  ( 𝑥 ‘ ∅ )  =  𝐶  ∧  ∀ 𝑘  ∈  𝑚 ( 𝑥 ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) )  →  ( 𝐹 : 𝐴 ⟶ ( 𝒫  𝐴  ∖  { ∅ } )  →  ∃ 𝑦  ∈  𝑆 ( dom  𝑦  =  suc  dom  𝑥  ∧  ( 𝑦  ↾  dom  𝑥 )  =  𝑥 ) ) ) | 
						
							| 278 | 34 277 | sylbi | ⊢ ( 𝑥  ∈  𝑆  →  ( 𝐹 : 𝐴 ⟶ ( 𝒫  𝐴  ∖  { ∅ } )  →  ∃ 𝑦  ∈  𝑆 ( dom  𝑦  =  suc  dom  𝑥  ∧  ( 𝑦  ↾  dom  𝑥 )  =  𝑥 ) ) ) | 
						
							| 279 | 278 | impcom | ⊢ ( ( 𝐹 : 𝐴 ⟶ ( 𝒫  𝐴  ∖  { ∅ } )  ∧  𝑥  ∈  𝑆 )  →  ∃ 𝑦  ∈  𝑆 ( dom  𝑦  =  suc  dom  𝑥  ∧  ( 𝑦  ↾  dom  𝑥 )  =  𝑥 ) ) | 
						
							| 280 |  | rabn0 | ⊢ ( { 𝑦  ∈  𝑆  ∣  ( dom  𝑦  =  suc  dom  𝑥  ∧  ( 𝑦  ↾  dom  𝑥 )  =  𝑥 ) }  ≠  ∅  ↔  ∃ 𝑦  ∈  𝑆 ( dom  𝑦  =  suc  dom  𝑥  ∧  ( 𝑦  ↾  dom  𝑥 )  =  𝑥 ) ) | 
						
							| 281 | 279 280 | sylibr | ⊢ ( ( 𝐹 : 𝐴 ⟶ ( 𝒫  𝐴  ∖  { ∅ } )  ∧  𝑥  ∈  𝑆 )  →  { 𝑦  ∈  𝑆  ∣  ( dom  𝑦  =  suc  dom  𝑥  ∧  ( 𝑦  ↾  dom  𝑥 )  =  𝑥 ) }  ≠  ∅ ) | 
						
							| 282 | 29 | rabex | ⊢ { 𝑦  ∈  𝑆  ∣  ( dom  𝑦  =  suc  dom  𝑥  ∧  ( 𝑦  ↾  dom  𝑥 )  =  𝑥 ) }  ∈  V | 
						
							| 283 | 282 | elsn | ⊢ ( { 𝑦  ∈  𝑆  ∣  ( dom  𝑦  =  suc  dom  𝑥  ∧  ( 𝑦  ↾  dom  𝑥 )  =  𝑥 ) }  ∈  { ∅ }  ↔  { 𝑦  ∈  𝑆  ∣  ( dom  𝑦  =  suc  dom  𝑥  ∧  ( 𝑦  ↾  dom  𝑥 )  =  𝑥 ) }  =  ∅ ) | 
						
							| 284 | 283 | necon3bbii | ⊢ ( ¬  { 𝑦  ∈  𝑆  ∣  ( dom  𝑦  =  suc  dom  𝑥  ∧  ( 𝑦  ↾  dom  𝑥 )  =  𝑥 ) }  ∈  { ∅ }  ↔  { 𝑦  ∈  𝑆  ∣  ( dom  𝑦  =  suc  dom  𝑥  ∧  ( 𝑦  ↾  dom  𝑥 )  =  𝑥 ) }  ≠  ∅ ) | 
						
							| 285 | 281 284 | sylibr | ⊢ ( ( 𝐹 : 𝐴 ⟶ ( 𝒫  𝐴  ∖  { ∅ } )  ∧  𝑥  ∈  𝑆 )  →  ¬  { 𝑦  ∈  𝑆  ∣  ( dom  𝑦  =  suc  dom  𝑥  ∧  ( 𝑦  ↾  dom  𝑥 )  =  𝑥 ) }  ∈  { ∅ } ) | 
						
							| 286 | 32 285 | eldifd | ⊢ ( ( 𝐹 : 𝐴 ⟶ ( 𝒫  𝐴  ∖  { ∅ } )  ∧  𝑥  ∈  𝑆 )  →  { 𝑦  ∈  𝑆  ∣  ( dom  𝑦  =  suc  dom  𝑥  ∧  ( 𝑦  ↾  dom  𝑥 )  =  𝑥 ) }  ∈  ( 𝒫  𝑆  ∖  { ∅ } ) ) | 
						
							| 287 | 286 3 | fmptd | ⊢ ( 𝐹 : 𝐴 ⟶ ( 𝒫  𝐴  ∖  { ∅ } )  →  𝐺 : 𝑆 ⟶ ( 𝒫  𝑆  ∖  { ∅ } ) ) | 
						
							| 288 | 29 | axdc2 | ⊢ ( ( 𝑆  ≠  ∅  ∧  𝐺 : 𝑆 ⟶ ( 𝒫  𝑆  ∖  { ∅ } ) )  →  ∃ ℎ ( ℎ : ω ⟶ 𝑆  ∧  ∀ 𝑘  ∈  ω ( ℎ ‘ suc  𝑘 )  ∈  ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) ) | 
						
							| 289 | 28 287 288 | syl2an | ⊢ ( ( 𝐶  ∈  𝐴  ∧  𝐹 : 𝐴 ⟶ ( 𝒫  𝐴  ∖  { ∅ } ) )  →  ∃ ℎ ( ℎ : ω ⟶ 𝑆  ∧  ∀ 𝑘  ∈  ω ( ℎ ‘ suc  𝑘 )  ∈  ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) ) | 
						
							| 290 | 1 2 3 | axdc3lem2 | ⊢ ( ∃ ℎ ( ℎ : ω ⟶ 𝑆  ∧  ∀ 𝑘  ∈  ω ( ℎ ‘ suc  𝑘 )  ∈  ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) )  →  ∃ 𝑔 ( 𝑔 : ω ⟶ 𝐴  ∧  ( 𝑔 ‘ ∅ )  =  𝐶  ∧  ∀ 𝑘  ∈  ω ( 𝑔 ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( 𝑔 ‘ 𝑘 ) ) ) ) | 
						
							| 291 | 289 290 | syl | ⊢ ( ( 𝐶  ∈  𝐴  ∧  𝐹 : 𝐴 ⟶ ( 𝒫  𝐴  ∖  { ∅ } ) )  →  ∃ 𝑔 ( 𝑔 : ω ⟶ 𝐴  ∧  ( 𝑔 ‘ ∅ )  =  𝐶  ∧  ∀ 𝑘  ∈  ω ( 𝑔 ‘ suc  𝑘 )  ∈  ( 𝐹 ‘ ( 𝑔 ‘ 𝑘 ) ) ) ) |