| Step | Hyp | Ref | Expression | 
						
							| 1 |  | axdc4lem.1 | ⊢ 𝐴  ∈  V | 
						
							| 2 |  | axdc4lem.2 | ⊢ 𝐺  =  ( 𝑛  ∈  ω ,  𝑥  ∈  𝐴  ↦  ( { suc  𝑛 }  ×  ( 𝑛 𝐹 𝑥 ) ) ) | 
						
							| 3 |  | peano1 | ⊢ ∅  ∈  ω | 
						
							| 4 |  | opelxpi | ⊢ ( ( ∅  ∈  ω  ∧  𝐶  ∈  𝐴 )  →  〈 ∅ ,  𝐶 〉  ∈  ( ω  ×  𝐴 ) ) | 
						
							| 5 | 3 4 | mpan | ⊢ ( 𝐶  ∈  𝐴  →  〈 ∅ ,  𝐶 〉  ∈  ( ω  ×  𝐴 ) ) | 
						
							| 6 |  | simp2 | ⊢ ( ( 𝐹 : ( ω  ×  𝐴 ) ⟶ ( 𝒫  𝐴  ∖  { ∅ } )  ∧  𝑛  ∈  ω  ∧  𝑥  ∈  𝐴 )  →  𝑛  ∈  ω ) | 
						
							| 7 |  | fovcdm | ⊢ ( ( 𝐹 : ( ω  ×  𝐴 ) ⟶ ( 𝒫  𝐴  ∖  { ∅ } )  ∧  𝑛  ∈  ω  ∧  𝑥  ∈  𝐴 )  →  ( 𝑛 𝐹 𝑥 )  ∈  ( 𝒫  𝐴  ∖  { ∅ } ) ) | 
						
							| 8 |  | peano2 | ⊢ ( 𝑛  ∈  ω  →  suc  𝑛  ∈  ω ) | 
						
							| 9 | 8 | snssd | ⊢ ( 𝑛  ∈  ω  →  { suc  𝑛 }  ⊆  ω ) | 
						
							| 10 |  | eldifi | ⊢ ( ( 𝑛 𝐹 𝑥 )  ∈  ( 𝒫  𝐴  ∖  { ∅ } )  →  ( 𝑛 𝐹 𝑥 )  ∈  𝒫  𝐴 ) | 
						
							| 11 | 1 | elpw2 | ⊢ ( ( 𝑛 𝐹 𝑥 )  ∈  𝒫  𝐴  ↔  ( 𝑛 𝐹 𝑥 )  ⊆  𝐴 ) | 
						
							| 12 |  | xpss12 | ⊢ ( ( { suc  𝑛 }  ⊆  ω  ∧  ( 𝑛 𝐹 𝑥 )  ⊆  𝐴 )  →  ( { suc  𝑛 }  ×  ( 𝑛 𝐹 𝑥 ) )  ⊆  ( ω  ×  𝐴 ) ) | 
						
							| 13 | 11 12 | sylan2b | ⊢ ( ( { suc  𝑛 }  ⊆  ω  ∧  ( 𝑛 𝐹 𝑥 )  ∈  𝒫  𝐴 )  →  ( { suc  𝑛 }  ×  ( 𝑛 𝐹 𝑥 ) )  ⊆  ( ω  ×  𝐴 ) ) | 
						
							| 14 | 9 10 13 | syl2an | ⊢ ( ( 𝑛  ∈  ω  ∧  ( 𝑛 𝐹 𝑥 )  ∈  ( 𝒫  𝐴  ∖  { ∅ } ) )  →  ( { suc  𝑛 }  ×  ( 𝑛 𝐹 𝑥 ) )  ⊆  ( ω  ×  𝐴 ) ) | 
						
							| 15 |  | snex | ⊢ { suc  𝑛 }  ∈  V | 
						
							| 16 |  | ovex | ⊢ ( 𝑛 𝐹 𝑥 )  ∈  V | 
						
							| 17 | 15 16 | xpex | ⊢ ( { suc  𝑛 }  ×  ( 𝑛 𝐹 𝑥 ) )  ∈  V | 
						
							| 18 | 17 | elpw | ⊢ ( ( { suc  𝑛 }  ×  ( 𝑛 𝐹 𝑥 ) )  ∈  𝒫  ( ω  ×  𝐴 )  ↔  ( { suc  𝑛 }  ×  ( 𝑛 𝐹 𝑥 ) )  ⊆  ( ω  ×  𝐴 ) ) | 
						
							| 19 | 14 18 | sylibr | ⊢ ( ( 𝑛  ∈  ω  ∧  ( 𝑛 𝐹 𝑥 )  ∈  ( 𝒫  𝐴  ∖  { ∅ } ) )  →  ( { suc  𝑛 }  ×  ( 𝑛 𝐹 𝑥 ) )  ∈  𝒫  ( ω  ×  𝐴 ) ) | 
						
							| 20 | 6 7 19 | syl2anc | ⊢ ( ( 𝐹 : ( ω  ×  𝐴 ) ⟶ ( 𝒫  𝐴  ∖  { ∅ } )  ∧  𝑛  ∈  ω  ∧  𝑥  ∈  𝐴 )  →  ( { suc  𝑛 }  ×  ( 𝑛 𝐹 𝑥 ) )  ∈  𝒫  ( ω  ×  𝐴 ) ) | 
						
							| 21 |  | eldifn | ⊢ ( ( 𝑛 𝐹 𝑥 )  ∈  ( 𝒫  𝐴  ∖  { ∅ } )  →  ¬  ( 𝑛 𝐹 𝑥 )  ∈  { ∅ } ) | 
						
							| 22 | 16 | elsn | ⊢ ( ( 𝑛 𝐹 𝑥 )  ∈  { ∅ }  ↔  ( 𝑛 𝐹 𝑥 )  =  ∅ ) | 
						
							| 23 | 22 | necon3bbii | ⊢ ( ¬  ( 𝑛 𝐹 𝑥 )  ∈  { ∅ }  ↔  ( 𝑛 𝐹 𝑥 )  ≠  ∅ ) | 
						
							| 24 |  | vex | ⊢ 𝑛  ∈  V | 
						
							| 25 | 24 | sucex | ⊢ suc  𝑛  ∈  V | 
						
							| 26 | 25 | snnz | ⊢ { suc  𝑛 }  ≠  ∅ | 
						
							| 27 |  | xpnz | ⊢ ( ( { suc  𝑛 }  ≠  ∅  ∧  ( 𝑛 𝐹 𝑥 )  ≠  ∅ )  ↔  ( { suc  𝑛 }  ×  ( 𝑛 𝐹 𝑥 ) )  ≠  ∅ ) | 
						
							| 28 | 27 | biimpi | ⊢ ( ( { suc  𝑛 }  ≠  ∅  ∧  ( 𝑛 𝐹 𝑥 )  ≠  ∅ )  →  ( { suc  𝑛 }  ×  ( 𝑛 𝐹 𝑥 ) )  ≠  ∅ ) | 
						
							| 29 | 26 28 | mpan | ⊢ ( ( 𝑛 𝐹 𝑥 )  ≠  ∅  →  ( { suc  𝑛 }  ×  ( 𝑛 𝐹 𝑥 ) )  ≠  ∅ ) | 
						
							| 30 | 23 29 | sylbi | ⊢ ( ¬  ( 𝑛 𝐹 𝑥 )  ∈  { ∅ }  →  ( { suc  𝑛 }  ×  ( 𝑛 𝐹 𝑥 ) )  ≠  ∅ ) | 
						
							| 31 | 17 | elsn | ⊢ ( ( { suc  𝑛 }  ×  ( 𝑛 𝐹 𝑥 ) )  ∈  { ∅ }  ↔  ( { suc  𝑛 }  ×  ( 𝑛 𝐹 𝑥 ) )  =  ∅ ) | 
						
							| 32 | 31 | necon3bbii | ⊢ ( ¬  ( { suc  𝑛 }  ×  ( 𝑛 𝐹 𝑥 ) )  ∈  { ∅ }  ↔  ( { suc  𝑛 }  ×  ( 𝑛 𝐹 𝑥 ) )  ≠  ∅ ) | 
						
							| 33 | 30 32 | sylibr | ⊢ ( ¬  ( 𝑛 𝐹 𝑥 )  ∈  { ∅ }  →  ¬  ( { suc  𝑛 }  ×  ( 𝑛 𝐹 𝑥 ) )  ∈  { ∅ } ) | 
						
							| 34 | 7 21 33 | 3syl | ⊢ ( ( 𝐹 : ( ω  ×  𝐴 ) ⟶ ( 𝒫  𝐴  ∖  { ∅ } )  ∧  𝑛  ∈  ω  ∧  𝑥  ∈  𝐴 )  →  ¬  ( { suc  𝑛 }  ×  ( 𝑛 𝐹 𝑥 ) )  ∈  { ∅ } ) | 
						
							| 35 | 20 34 | eldifd | ⊢ ( ( 𝐹 : ( ω  ×  𝐴 ) ⟶ ( 𝒫  𝐴  ∖  { ∅ } )  ∧  𝑛  ∈  ω  ∧  𝑥  ∈  𝐴 )  →  ( { suc  𝑛 }  ×  ( 𝑛 𝐹 𝑥 ) )  ∈  ( 𝒫  ( ω  ×  𝐴 )  ∖  { ∅ } ) ) | 
						
							| 36 | 35 | 3expib | ⊢ ( 𝐹 : ( ω  ×  𝐴 ) ⟶ ( 𝒫  𝐴  ∖  { ∅ } )  →  ( ( 𝑛  ∈  ω  ∧  𝑥  ∈  𝐴 )  →  ( { suc  𝑛 }  ×  ( 𝑛 𝐹 𝑥 ) )  ∈  ( 𝒫  ( ω  ×  𝐴 )  ∖  { ∅ } ) ) ) | 
						
							| 37 | 36 | ralrimivv | ⊢ ( 𝐹 : ( ω  ×  𝐴 ) ⟶ ( 𝒫  𝐴  ∖  { ∅ } )  →  ∀ 𝑛  ∈  ω ∀ 𝑥  ∈  𝐴 ( { suc  𝑛 }  ×  ( 𝑛 𝐹 𝑥 ) )  ∈  ( 𝒫  ( ω  ×  𝐴 )  ∖  { ∅ } ) ) | 
						
							| 38 | 2 | fmpo | ⊢ ( ∀ 𝑛  ∈  ω ∀ 𝑥  ∈  𝐴 ( { suc  𝑛 }  ×  ( 𝑛 𝐹 𝑥 ) )  ∈  ( 𝒫  ( ω  ×  𝐴 )  ∖  { ∅ } )  ↔  𝐺 : ( ω  ×  𝐴 ) ⟶ ( 𝒫  ( ω  ×  𝐴 )  ∖  { ∅ } ) ) | 
						
							| 39 | 37 38 | sylib | ⊢ ( 𝐹 : ( ω  ×  𝐴 ) ⟶ ( 𝒫  𝐴  ∖  { ∅ } )  →  𝐺 : ( ω  ×  𝐴 ) ⟶ ( 𝒫  ( ω  ×  𝐴 )  ∖  { ∅ } ) ) | 
						
							| 40 |  | dcomex | ⊢ ω  ∈  V | 
						
							| 41 | 40 1 | xpex | ⊢ ( ω  ×  𝐴 )  ∈  V | 
						
							| 42 | 41 | axdc3 | ⊢ ( ( 〈 ∅ ,  𝐶 〉  ∈  ( ω  ×  𝐴 )  ∧  𝐺 : ( ω  ×  𝐴 ) ⟶ ( 𝒫  ( ω  ×  𝐴 )  ∖  { ∅ } ) )  →  ∃ ℎ ( ℎ : ω ⟶ ( ω  ×  𝐴 )  ∧  ( ℎ ‘ ∅ )  =  〈 ∅ ,  𝐶 〉  ∧  ∀ 𝑘  ∈  ω ( ℎ ‘ suc  𝑘 )  ∈  ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) ) | 
						
							| 43 | 5 39 42 | syl2an | ⊢ ( ( 𝐶  ∈  𝐴  ∧  𝐹 : ( ω  ×  𝐴 ) ⟶ ( 𝒫  𝐴  ∖  { ∅ } ) )  →  ∃ ℎ ( ℎ : ω ⟶ ( ω  ×  𝐴 )  ∧  ( ℎ ‘ ∅ )  =  〈 ∅ ,  𝐶 〉  ∧  ∀ 𝑘  ∈  ω ( ℎ ‘ suc  𝑘 )  ∈  ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) ) | 
						
							| 44 |  | 2ndcof | ⊢ ( ℎ : ω ⟶ ( ω  ×  𝐴 )  →  ( 2nd   ∘  ℎ ) : ω ⟶ 𝐴 ) | 
						
							| 45 | 44 | 3ad2ant1 | ⊢ ( ( ℎ : ω ⟶ ( ω  ×  𝐴 )  ∧  ( ℎ ‘ ∅ )  =  〈 ∅ ,  𝐶 〉  ∧  ∀ 𝑘  ∈  ω ( ℎ ‘ suc  𝑘 )  ∈  ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) )  →  ( 2nd   ∘  ℎ ) : ω ⟶ 𝐴 ) | 
						
							| 46 | 45 | adantl | ⊢ ( ( 𝐶  ∈  𝐴  ∧  ( ℎ : ω ⟶ ( ω  ×  𝐴 )  ∧  ( ℎ ‘ ∅ )  =  〈 ∅ ,  𝐶 〉  ∧  ∀ 𝑘  ∈  ω ( ℎ ‘ suc  𝑘 )  ∈  ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) )  →  ( 2nd   ∘  ℎ ) : ω ⟶ 𝐴 ) | 
						
							| 47 |  | fex2 | ⊢ ( ( ( 2nd   ∘  ℎ ) : ω ⟶ 𝐴  ∧  ω  ∈  V  ∧  𝐴  ∈  V )  →  ( 2nd   ∘  ℎ )  ∈  V ) | 
						
							| 48 | 40 1 47 | mp3an23 | ⊢ ( ( 2nd   ∘  ℎ ) : ω ⟶ 𝐴  →  ( 2nd   ∘  ℎ )  ∈  V ) | 
						
							| 49 | 46 48 | syl | ⊢ ( ( 𝐶  ∈  𝐴  ∧  ( ℎ : ω ⟶ ( ω  ×  𝐴 )  ∧  ( ℎ ‘ ∅ )  =  〈 ∅ ,  𝐶 〉  ∧  ∀ 𝑘  ∈  ω ( ℎ ‘ suc  𝑘 )  ∈  ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) )  →  ( 2nd   ∘  ℎ )  ∈  V ) | 
						
							| 50 |  | fvco3 | ⊢ ( ( ℎ : ω ⟶ ( ω  ×  𝐴 )  ∧  ∅  ∈  ω )  →  ( ( 2nd   ∘  ℎ ) ‘ ∅ )  =  ( 2nd  ‘ ( ℎ ‘ ∅ ) ) ) | 
						
							| 51 | 3 50 | mpan2 | ⊢ ( ℎ : ω ⟶ ( ω  ×  𝐴 )  →  ( ( 2nd   ∘  ℎ ) ‘ ∅ )  =  ( 2nd  ‘ ( ℎ ‘ ∅ ) ) ) | 
						
							| 52 | 51 | 3ad2ant1 | ⊢ ( ( ℎ : ω ⟶ ( ω  ×  𝐴 )  ∧  ( ℎ ‘ ∅ )  =  〈 ∅ ,  𝐶 〉  ∧  ∀ 𝑘  ∈  ω ( ℎ ‘ suc  𝑘 )  ∈  ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) )  →  ( ( 2nd   ∘  ℎ ) ‘ ∅ )  =  ( 2nd  ‘ ( ℎ ‘ ∅ ) ) ) | 
						
							| 53 |  | fveq2 | ⊢ ( ( ℎ ‘ ∅ )  =  〈 ∅ ,  𝐶 〉  →  ( 2nd  ‘ ( ℎ ‘ ∅ ) )  =  ( 2nd  ‘ 〈 ∅ ,  𝐶 〉 ) ) | 
						
							| 54 | 53 | 3ad2ant2 | ⊢ ( ( ℎ : ω ⟶ ( ω  ×  𝐴 )  ∧  ( ℎ ‘ ∅ )  =  〈 ∅ ,  𝐶 〉  ∧  ∀ 𝑘  ∈  ω ( ℎ ‘ suc  𝑘 )  ∈  ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) )  →  ( 2nd  ‘ ( ℎ ‘ ∅ ) )  =  ( 2nd  ‘ 〈 ∅ ,  𝐶 〉 ) ) | 
						
							| 55 | 52 54 | eqtrd | ⊢ ( ( ℎ : ω ⟶ ( ω  ×  𝐴 )  ∧  ( ℎ ‘ ∅ )  =  〈 ∅ ,  𝐶 〉  ∧  ∀ 𝑘  ∈  ω ( ℎ ‘ suc  𝑘 )  ∈  ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) )  →  ( ( 2nd   ∘  ℎ ) ‘ ∅ )  =  ( 2nd  ‘ 〈 ∅ ,  𝐶 〉 ) ) | 
						
							| 56 |  | op2ndg | ⊢ ( ( ∅  ∈  ω  ∧  𝐶  ∈  𝐴 )  →  ( 2nd  ‘ 〈 ∅ ,  𝐶 〉 )  =  𝐶 ) | 
						
							| 57 | 3 56 | mpan | ⊢ ( 𝐶  ∈  𝐴  →  ( 2nd  ‘ 〈 ∅ ,  𝐶 〉 )  =  𝐶 ) | 
						
							| 58 | 55 57 | sylan9eqr | ⊢ ( ( 𝐶  ∈  𝐴  ∧  ( ℎ : ω ⟶ ( ω  ×  𝐴 )  ∧  ( ℎ ‘ ∅ )  =  〈 ∅ ,  𝐶 〉  ∧  ∀ 𝑘  ∈  ω ( ℎ ‘ suc  𝑘 )  ∈  ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) )  →  ( ( 2nd   ∘  ℎ ) ‘ ∅ )  =  𝐶 ) | 
						
							| 59 |  | nfv | ⊢ Ⅎ 𝑘 𝐶  ∈  𝐴 | 
						
							| 60 |  | nfv | ⊢ Ⅎ 𝑘 ℎ : ω ⟶ ( ω  ×  𝐴 ) | 
						
							| 61 |  | nfv | ⊢ Ⅎ 𝑘 ( ℎ ‘ ∅ )  =  〈 ∅ ,  𝐶 〉 | 
						
							| 62 |  | nfra1 | ⊢ Ⅎ 𝑘 ∀ 𝑘  ∈  ω ( ℎ ‘ suc  𝑘 )  ∈  ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) | 
						
							| 63 | 60 61 62 | nf3an | ⊢ Ⅎ 𝑘 ( ℎ : ω ⟶ ( ω  ×  𝐴 )  ∧  ( ℎ ‘ ∅ )  =  〈 ∅ ,  𝐶 〉  ∧  ∀ 𝑘  ∈  ω ( ℎ ‘ suc  𝑘 )  ∈  ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) | 
						
							| 64 | 59 63 | nfan | ⊢ Ⅎ 𝑘 ( 𝐶  ∈  𝐴  ∧  ( ℎ : ω ⟶ ( ω  ×  𝐴 )  ∧  ( ℎ ‘ ∅ )  =  〈 ∅ ,  𝐶 〉  ∧  ∀ 𝑘  ∈  ω ( ℎ ‘ suc  𝑘 )  ∈  ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) ) | 
						
							| 65 |  | fveq2 | ⊢ ( 𝑚  =  ∅  →  ( ℎ ‘ 𝑚 )  =  ( ℎ ‘ ∅ ) ) | 
						
							| 66 |  | opeq1 | ⊢ ( 𝑚  =  ∅  →  〈 𝑚 ,  𝑧 〉  =  〈 ∅ ,  𝑧 〉 ) | 
						
							| 67 | 65 66 | eqeq12d | ⊢ ( 𝑚  =  ∅  →  ( ( ℎ ‘ 𝑚 )  =  〈 𝑚 ,  𝑧 〉  ↔  ( ℎ ‘ ∅ )  =  〈 ∅ ,  𝑧 〉 ) ) | 
						
							| 68 | 67 | exbidv | ⊢ ( 𝑚  =  ∅  →  ( ∃ 𝑧 ( ℎ ‘ 𝑚 )  =  〈 𝑚 ,  𝑧 〉  ↔  ∃ 𝑧 ( ℎ ‘ ∅ )  =  〈 ∅ ,  𝑧 〉 ) ) | 
						
							| 69 |  | fveq2 | ⊢ ( 𝑚  =  𝑖  →  ( ℎ ‘ 𝑚 )  =  ( ℎ ‘ 𝑖 ) ) | 
						
							| 70 |  | opeq1 | ⊢ ( 𝑚  =  𝑖  →  〈 𝑚 ,  𝑧 〉  =  〈 𝑖 ,  𝑧 〉 ) | 
						
							| 71 | 69 70 | eqeq12d | ⊢ ( 𝑚  =  𝑖  →  ( ( ℎ ‘ 𝑚 )  =  〈 𝑚 ,  𝑧 〉  ↔  ( ℎ ‘ 𝑖 )  =  〈 𝑖 ,  𝑧 〉 ) ) | 
						
							| 72 | 71 | exbidv | ⊢ ( 𝑚  =  𝑖  →  ( ∃ 𝑧 ( ℎ ‘ 𝑚 )  =  〈 𝑚 ,  𝑧 〉  ↔  ∃ 𝑧 ( ℎ ‘ 𝑖 )  =  〈 𝑖 ,  𝑧 〉 ) ) | 
						
							| 73 |  | fveq2 | ⊢ ( 𝑚  =  suc  𝑖  →  ( ℎ ‘ 𝑚 )  =  ( ℎ ‘ suc  𝑖 ) ) | 
						
							| 74 |  | opeq1 | ⊢ ( 𝑚  =  suc  𝑖  →  〈 𝑚 ,  𝑧 〉  =  〈 suc  𝑖 ,  𝑧 〉 ) | 
						
							| 75 | 73 74 | eqeq12d | ⊢ ( 𝑚  =  suc  𝑖  →  ( ( ℎ ‘ 𝑚 )  =  〈 𝑚 ,  𝑧 〉  ↔  ( ℎ ‘ suc  𝑖 )  =  〈 suc  𝑖 ,  𝑧 〉 ) ) | 
						
							| 76 | 75 | exbidv | ⊢ ( 𝑚  =  suc  𝑖  →  ( ∃ 𝑧 ( ℎ ‘ 𝑚 )  =  〈 𝑚 ,  𝑧 〉  ↔  ∃ 𝑧 ( ℎ ‘ suc  𝑖 )  =  〈 suc  𝑖 ,  𝑧 〉 ) ) | 
						
							| 77 |  | opeq2 | ⊢ ( 𝑧  =  𝐶  →  〈 ∅ ,  𝑧 〉  =  〈 ∅ ,  𝐶 〉 ) | 
						
							| 78 | 77 | eqeq2d | ⊢ ( 𝑧  =  𝐶  →  ( ( ℎ ‘ ∅ )  =  〈 ∅ ,  𝑧 〉  ↔  ( ℎ ‘ ∅ )  =  〈 ∅ ,  𝐶 〉 ) ) | 
						
							| 79 | 78 | spcegv | ⊢ ( 𝐶  ∈  𝐴  →  ( ( ℎ ‘ ∅ )  =  〈 ∅ ,  𝐶 〉  →  ∃ 𝑧 ( ℎ ‘ ∅ )  =  〈 ∅ ,  𝑧 〉 ) ) | 
						
							| 80 | 79 | imp | ⊢ ( ( 𝐶  ∈  𝐴  ∧  ( ℎ ‘ ∅ )  =  〈 ∅ ,  𝐶 〉 )  →  ∃ 𝑧 ( ℎ ‘ ∅ )  =  〈 ∅ ,  𝑧 〉 ) | 
						
							| 81 | 80 | 3ad2antr2 | ⊢ ( ( 𝐶  ∈  𝐴  ∧  ( ℎ : ω ⟶ ( ω  ×  𝐴 )  ∧  ( ℎ ‘ ∅ )  =  〈 ∅ ,  𝐶 〉  ∧  ∀ 𝑘  ∈  ω ( ℎ ‘ suc  𝑘 )  ∈  ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) )  →  ∃ 𝑧 ( ℎ ‘ ∅ )  =  〈 ∅ ,  𝑧 〉 ) | 
						
							| 82 |  | fveq2 | ⊢ ( ( ℎ ‘ 𝑖 )  =  〈 𝑖 ,  𝑧 〉  →  ( 𝐺 ‘ ( ℎ ‘ 𝑖 ) )  =  ( 𝐺 ‘ 〈 𝑖 ,  𝑧 〉 ) ) | 
						
							| 83 |  | df-ov | ⊢ ( 𝑖 𝐺 𝑧 )  =  ( 𝐺 ‘ 〈 𝑖 ,  𝑧 〉 ) | 
						
							| 84 | 82 83 | eqtr4di | ⊢ ( ( ℎ ‘ 𝑖 )  =  〈 𝑖 ,  𝑧 〉  →  ( 𝐺 ‘ ( ℎ ‘ 𝑖 ) )  =  ( 𝑖 𝐺 𝑧 ) ) | 
						
							| 85 | 84 | adantl | ⊢ ( ( ( ℎ : ω ⟶ ( ω  ×  𝐴 )  ∧  𝑖  ∈  ω )  ∧  ( ℎ ‘ 𝑖 )  =  〈 𝑖 ,  𝑧 〉 )  →  ( 𝐺 ‘ ( ℎ ‘ 𝑖 ) )  =  ( 𝑖 𝐺 𝑧 ) ) | 
						
							| 86 |  | simplr | ⊢ ( ( ( ℎ : ω ⟶ ( ω  ×  𝐴 )  ∧  𝑖  ∈  ω )  ∧  ( ℎ ‘ 𝑖 )  =  〈 𝑖 ,  𝑧 〉 )  →  𝑖  ∈  ω ) | 
						
							| 87 |  | ffvelcdm | ⊢ ( ( ℎ : ω ⟶ ( ω  ×  𝐴 )  ∧  𝑖  ∈  ω )  →  ( ℎ ‘ 𝑖 )  ∈  ( ω  ×  𝐴 ) ) | 
						
							| 88 |  | eleq1 | ⊢ ( ( ℎ ‘ 𝑖 )  =  〈 𝑖 ,  𝑧 〉  →  ( ( ℎ ‘ 𝑖 )  ∈  ( ω  ×  𝐴 )  ↔  〈 𝑖 ,  𝑧 〉  ∈  ( ω  ×  𝐴 ) ) ) | 
						
							| 89 |  | opelxp2 | ⊢ ( 〈 𝑖 ,  𝑧 〉  ∈  ( ω  ×  𝐴 )  →  𝑧  ∈  𝐴 ) | 
						
							| 90 | 88 89 | biimtrdi | ⊢ ( ( ℎ ‘ 𝑖 )  =  〈 𝑖 ,  𝑧 〉  →  ( ( ℎ ‘ 𝑖 )  ∈  ( ω  ×  𝐴 )  →  𝑧  ∈  𝐴 ) ) | 
						
							| 91 | 87 90 | mpan9 | ⊢ ( ( ( ℎ : ω ⟶ ( ω  ×  𝐴 )  ∧  𝑖  ∈  ω )  ∧  ( ℎ ‘ 𝑖 )  =  〈 𝑖 ,  𝑧 〉 )  →  𝑧  ∈  𝐴 ) | 
						
							| 92 |  | suceq | ⊢ ( 𝑛  =  𝑖  →  suc  𝑛  =  suc  𝑖 ) | 
						
							| 93 | 92 | sneqd | ⊢ ( 𝑛  =  𝑖  →  { suc  𝑛 }  =  { suc  𝑖 } ) | 
						
							| 94 |  | oveq1 | ⊢ ( 𝑛  =  𝑖  →  ( 𝑛 𝐹 𝑥 )  =  ( 𝑖 𝐹 𝑥 ) ) | 
						
							| 95 | 93 94 | xpeq12d | ⊢ ( 𝑛  =  𝑖  →  ( { suc  𝑛 }  ×  ( 𝑛 𝐹 𝑥 ) )  =  ( { suc  𝑖 }  ×  ( 𝑖 𝐹 𝑥 ) ) ) | 
						
							| 96 |  | oveq2 | ⊢ ( 𝑥  =  𝑧  →  ( 𝑖 𝐹 𝑥 )  =  ( 𝑖 𝐹 𝑧 ) ) | 
						
							| 97 | 96 | xpeq2d | ⊢ ( 𝑥  =  𝑧  →  ( { suc  𝑖 }  ×  ( 𝑖 𝐹 𝑥 ) )  =  ( { suc  𝑖 }  ×  ( 𝑖 𝐹 𝑧 ) ) ) | 
						
							| 98 |  | snex | ⊢ { suc  𝑖 }  ∈  V | 
						
							| 99 |  | ovex | ⊢ ( 𝑖 𝐹 𝑧 )  ∈  V | 
						
							| 100 | 98 99 | xpex | ⊢ ( { suc  𝑖 }  ×  ( 𝑖 𝐹 𝑧 ) )  ∈  V | 
						
							| 101 | 95 97 2 100 | ovmpo | ⊢ ( ( 𝑖  ∈  ω  ∧  𝑧  ∈  𝐴 )  →  ( 𝑖 𝐺 𝑧 )  =  ( { suc  𝑖 }  ×  ( 𝑖 𝐹 𝑧 ) ) ) | 
						
							| 102 | 86 91 101 | syl2anc | ⊢ ( ( ( ℎ : ω ⟶ ( ω  ×  𝐴 )  ∧  𝑖  ∈  ω )  ∧  ( ℎ ‘ 𝑖 )  =  〈 𝑖 ,  𝑧 〉 )  →  ( 𝑖 𝐺 𝑧 )  =  ( { suc  𝑖 }  ×  ( 𝑖 𝐹 𝑧 ) ) ) | 
						
							| 103 | 85 102 | eqtrd | ⊢ ( ( ( ℎ : ω ⟶ ( ω  ×  𝐴 )  ∧  𝑖  ∈  ω )  ∧  ( ℎ ‘ 𝑖 )  =  〈 𝑖 ,  𝑧 〉 )  →  ( 𝐺 ‘ ( ℎ ‘ 𝑖 ) )  =  ( { suc  𝑖 }  ×  ( 𝑖 𝐹 𝑧 ) ) ) | 
						
							| 104 |  | suceq | ⊢ ( 𝑘  =  𝑖  →  suc  𝑘  =  suc  𝑖 ) | 
						
							| 105 | 104 | fveq2d | ⊢ ( 𝑘  =  𝑖  →  ( ℎ ‘ suc  𝑘 )  =  ( ℎ ‘ suc  𝑖 ) ) | 
						
							| 106 |  | 2fveq3 | ⊢ ( 𝑘  =  𝑖  →  ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) )  =  ( 𝐺 ‘ ( ℎ ‘ 𝑖 ) ) ) | 
						
							| 107 | 105 106 | eleq12d | ⊢ ( 𝑘  =  𝑖  →  ( ( ℎ ‘ suc  𝑘 )  ∈  ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) )  ↔  ( ℎ ‘ suc  𝑖 )  ∈  ( 𝐺 ‘ ( ℎ ‘ 𝑖 ) ) ) ) | 
						
							| 108 | 107 | rspcv | ⊢ ( 𝑖  ∈  ω  →  ( ∀ 𝑘  ∈  ω ( ℎ ‘ suc  𝑘 )  ∈  ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) )  →  ( ℎ ‘ suc  𝑖 )  ∈  ( 𝐺 ‘ ( ℎ ‘ 𝑖 ) ) ) ) | 
						
							| 109 | 108 | ad2antlr | ⊢ ( ( ( ℎ : ω ⟶ ( ω  ×  𝐴 )  ∧  𝑖  ∈  ω )  ∧  ( ℎ ‘ 𝑖 )  =  〈 𝑖 ,  𝑧 〉 )  →  ( ∀ 𝑘  ∈  ω ( ℎ ‘ suc  𝑘 )  ∈  ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) )  →  ( ℎ ‘ suc  𝑖 )  ∈  ( 𝐺 ‘ ( ℎ ‘ 𝑖 ) ) ) ) | 
						
							| 110 |  | eleq2 | ⊢ ( ( 𝐺 ‘ ( ℎ ‘ 𝑖 ) )  =  ( { suc  𝑖 }  ×  ( 𝑖 𝐹 𝑧 ) )  →  ( ( ℎ ‘ suc  𝑖 )  ∈  ( 𝐺 ‘ ( ℎ ‘ 𝑖 ) )  ↔  ( ℎ ‘ suc  𝑖 )  ∈  ( { suc  𝑖 }  ×  ( 𝑖 𝐹 𝑧 ) ) ) ) | 
						
							| 111 |  | elxp | ⊢ ( ( ℎ ‘ suc  𝑖 )  ∈  ( { suc  𝑖 }  ×  ( 𝑖 𝐹 𝑧 ) )  ↔  ∃ 𝑠 ∃ 𝑡 ( ( ℎ ‘ suc  𝑖 )  =  〈 𝑠 ,  𝑡 〉  ∧  ( 𝑠  ∈  { suc  𝑖 }  ∧  𝑡  ∈  ( 𝑖 𝐹 𝑧 ) ) ) ) | 
						
							| 112 |  | velsn | ⊢ ( 𝑠  ∈  { suc  𝑖 }  ↔  𝑠  =  suc  𝑖 ) | 
						
							| 113 |  | opeq1 | ⊢ ( 𝑠  =  suc  𝑖  →  〈 𝑠 ,  𝑡 〉  =  〈 suc  𝑖 ,  𝑡 〉 ) | 
						
							| 114 | 112 113 | sylbi | ⊢ ( 𝑠  ∈  { suc  𝑖 }  →  〈 𝑠 ,  𝑡 〉  =  〈 suc  𝑖 ,  𝑡 〉 ) | 
						
							| 115 | 114 | eqeq2d | ⊢ ( 𝑠  ∈  { suc  𝑖 }  →  ( ( ℎ ‘ suc  𝑖 )  =  〈 𝑠 ,  𝑡 〉  ↔  ( ℎ ‘ suc  𝑖 )  =  〈 suc  𝑖 ,  𝑡 〉 ) ) | 
						
							| 116 | 115 | biimpac | ⊢ ( ( ( ℎ ‘ suc  𝑖 )  =  〈 𝑠 ,  𝑡 〉  ∧  𝑠  ∈  { suc  𝑖 } )  →  ( ℎ ‘ suc  𝑖 )  =  〈 suc  𝑖 ,  𝑡 〉 ) | 
						
							| 117 | 116 | adantrr | ⊢ ( ( ( ℎ ‘ suc  𝑖 )  =  〈 𝑠 ,  𝑡 〉  ∧  ( 𝑠  ∈  { suc  𝑖 }  ∧  𝑡  ∈  ( 𝑖 𝐹 𝑧 ) ) )  →  ( ℎ ‘ suc  𝑖 )  =  〈 suc  𝑖 ,  𝑡 〉 ) | 
						
							| 118 | 117 | eximi | ⊢ ( ∃ 𝑡 ( ( ℎ ‘ suc  𝑖 )  =  〈 𝑠 ,  𝑡 〉  ∧  ( 𝑠  ∈  { suc  𝑖 }  ∧  𝑡  ∈  ( 𝑖 𝐹 𝑧 ) ) )  →  ∃ 𝑡 ( ℎ ‘ suc  𝑖 )  =  〈 suc  𝑖 ,  𝑡 〉 ) | 
						
							| 119 | 118 | exlimiv | ⊢ ( ∃ 𝑠 ∃ 𝑡 ( ( ℎ ‘ suc  𝑖 )  =  〈 𝑠 ,  𝑡 〉  ∧  ( 𝑠  ∈  { suc  𝑖 }  ∧  𝑡  ∈  ( 𝑖 𝐹 𝑧 ) ) )  →  ∃ 𝑡 ( ℎ ‘ suc  𝑖 )  =  〈 suc  𝑖 ,  𝑡 〉 ) | 
						
							| 120 | 111 119 | sylbi | ⊢ ( ( ℎ ‘ suc  𝑖 )  ∈  ( { suc  𝑖 }  ×  ( 𝑖 𝐹 𝑧 ) )  →  ∃ 𝑡 ( ℎ ‘ suc  𝑖 )  =  〈 suc  𝑖 ,  𝑡 〉 ) | 
						
							| 121 | 110 120 | biimtrdi | ⊢ ( ( 𝐺 ‘ ( ℎ ‘ 𝑖 ) )  =  ( { suc  𝑖 }  ×  ( 𝑖 𝐹 𝑧 ) )  →  ( ( ℎ ‘ suc  𝑖 )  ∈  ( 𝐺 ‘ ( ℎ ‘ 𝑖 ) )  →  ∃ 𝑡 ( ℎ ‘ suc  𝑖 )  =  〈 suc  𝑖 ,  𝑡 〉 ) ) | 
						
							| 122 | 103 109 121 | sylsyld | ⊢ ( ( ( ℎ : ω ⟶ ( ω  ×  𝐴 )  ∧  𝑖  ∈  ω )  ∧  ( ℎ ‘ 𝑖 )  =  〈 𝑖 ,  𝑧 〉 )  →  ( ∀ 𝑘  ∈  ω ( ℎ ‘ suc  𝑘 )  ∈  ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) )  →  ∃ 𝑡 ( ℎ ‘ suc  𝑖 )  =  〈 suc  𝑖 ,  𝑡 〉 ) ) | 
						
							| 123 | 122 | expcom | ⊢ ( ( ℎ ‘ 𝑖 )  =  〈 𝑖 ,  𝑧 〉  →  ( ( ℎ : ω ⟶ ( ω  ×  𝐴 )  ∧  𝑖  ∈  ω )  →  ( ∀ 𝑘  ∈  ω ( ℎ ‘ suc  𝑘 )  ∈  ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) )  →  ∃ 𝑡 ( ℎ ‘ suc  𝑖 )  =  〈 suc  𝑖 ,  𝑡 〉 ) ) ) | 
						
							| 124 | 123 | exlimiv | ⊢ ( ∃ 𝑧 ( ℎ ‘ 𝑖 )  =  〈 𝑖 ,  𝑧 〉  →  ( ( ℎ : ω ⟶ ( ω  ×  𝐴 )  ∧  𝑖  ∈  ω )  →  ( ∀ 𝑘  ∈  ω ( ℎ ‘ suc  𝑘 )  ∈  ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) )  →  ∃ 𝑡 ( ℎ ‘ suc  𝑖 )  =  〈 suc  𝑖 ,  𝑡 〉 ) ) ) | 
						
							| 125 | 124 | com3l | ⊢ ( ( ℎ : ω ⟶ ( ω  ×  𝐴 )  ∧  𝑖  ∈  ω )  →  ( ∀ 𝑘  ∈  ω ( ℎ ‘ suc  𝑘 )  ∈  ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) )  →  ( ∃ 𝑧 ( ℎ ‘ 𝑖 )  =  〈 𝑖 ,  𝑧 〉  →  ∃ 𝑡 ( ℎ ‘ suc  𝑖 )  =  〈 suc  𝑖 ,  𝑡 〉 ) ) ) | 
						
							| 126 |  | opeq2 | ⊢ ( 𝑡  =  𝑧  →  〈 suc  𝑖 ,  𝑡 〉  =  〈 suc  𝑖 ,  𝑧 〉 ) | 
						
							| 127 | 126 | eqeq2d | ⊢ ( 𝑡  =  𝑧  →  ( ( ℎ ‘ suc  𝑖 )  =  〈 suc  𝑖 ,  𝑡 〉  ↔  ( ℎ ‘ suc  𝑖 )  =  〈 suc  𝑖 ,  𝑧 〉 ) ) | 
						
							| 128 | 127 | cbvexvw | ⊢ ( ∃ 𝑡 ( ℎ ‘ suc  𝑖 )  =  〈 suc  𝑖 ,  𝑡 〉  ↔  ∃ 𝑧 ( ℎ ‘ suc  𝑖 )  =  〈 suc  𝑖 ,  𝑧 〉 ) | 
						
							| 129 | 125 128 | syl8ib | ⊢ ( ( ℎ : ω ⟶ ( ω  ×  𝐴 )  ∧  𝑖  ∈  ω )  →  ( ∀ 𝑘  ∈  ω ( ℎ ‘ suc  𝑘 )  ∈  ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) )  →  ( ∃ 𝑧 ( ℎ ‘ 𝑖 )  =  〈 𝑖 ,  𝑧 〉  →  ∃ 𝑧 ( ℎ ‘ suc  𝑖 )  =  〈 suc  𝑖 ,  𝑧 〉 ) ) ) | 
						
							| 130 | 129 | impancom | ⊢ ( ( ℎ : ω ⟶ ( ω  ×  𝐴 )  ∧  ∀ 𝑘  ∈  ω ( ℎ ‘ suc  𝑘 )  ∈  ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) )  →  ( 𝑖  ∈  ω  →  ( ∃ 𝑧 ( ℎ ‘ 𝑖 )  =  〈 𝑖 ,  𝑧 〉  →  ∃ 𝑧 ( ℎ ‘ suc  𝑖 )  =  〈 suc  𝑖 ,  𝑧 〉 ) ) ) | 
						
							| 131 | 130 | 3adant2 | ⊢ ( ( ℎ : ω ⟶ ( ω  ×  𝐴 )  ∧  ( ℎ ‘ ∅ )  =  〈 ∅ ,  𝐶 〉  ∧  ∀ 𝑘  ∈  ω ( ℎ ‘ suc  𝑘 )  ∈  ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) )  →  ( 𝑖  ∈  ω  →  ( ∃ 𝑧 ( ℎ ‘ 𝑖 )  =  〈 𝑖 ,  𝑧 〉  →  ∃ 𝑧 ( ℎ ‘ suc  𝑖 )  =  〈 suc  𝑖 ,  𝑧 〉 ) ) ) | 
						
							| 132 | 131 | adantl | ⊢ ( ( 𝐶  ∈  𝐴  ∧  ( ℎ : ω ⟶ ( ω  ×  𝐴 )  ∧  ( ℎ ‘ ∅ )  =  〈 ∅ ,  𝐶 〉  ∧  ∀ 𝑘  ∈  ω ( ℎ ‘ suc  𝑘 )  ∈  ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) )  →  ( 𝑖  ∈  ω  →  ( ∃ 𝑧 ( ℎ ‘ 𝑖 )  =  〈 𝑖 ,  𝑧 〉  →  ∃ 𝑧 ( ℎ ‘ suc  𝑖 )  =  〈 suc  𝑖 ,  𝑧 〉 ) ) ) | 
						
							| 133 | 132 | com12 | ⊢ ( 𝑖  ∈  ω  →  ( ( 𝐶  ∈  𝐴  ∧  ( ℎ : ω ⟶ ( ω  ×  𝐴 )  ∧  ( ℎ ‘ ∅ )  =  〈 ∅ ,  𝐶 〉  ∧  ∀ 𝑘  ∈  ω ( ℎ ‘ suc  𝑘 )  ∈  ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) )  →  ( ∃ 𝑧 ( ℎ ‘ 𝑖 )  =  〈 𝑖 ,  𝑧 〉  →  ∃ 𝑧 ( ℎ ‘ suc  𝑖 )  =  〈 suc  𝑖 ,  𝑧 〉 ) ) ) | 
						
							| 134 | 68 72 76 81 133 | finds2 | ⊢ ( 𝑚  ∈  ω  →  ( ( 𝐶  ∈  𝐴  ∧  ( ℎ : ω ⟶ ( ω  ×  𝐴 )  ∧  ( ℎ ‘ ∅ )  =  〈 ∅ ,  𝐶 〉  ∧  ∀ 𝑘  ∈  ω ( ℎ ‘ suc  𝑘 )  ∈  ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) )  →  ∃ 𝑧 ( ℎ ‘ 𝑚 )  =  〈 𝑚 ,  𝑧 〉 ) ) | 
						
							| 135 | 134 | com12 | ⊢ ( ( 𝐶  ∈  𝐴  ∧  ( ℎ : ω ⟶ ( ω  ×  𝐴 )  ∧  ( ℎ ‘ ∅ )  =  〈 ∅ ,  𝐶 〉  ∧  ∀ 𝑘  ∈  ω ( ℎ ‘ suc  𝑘 )  ∈  ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) )  →  ( 𝑚  ∈  ω  →  ∃ 𝑧 ( ℎ ‘ 𝑚 )  =  〈 𝑚 ,  𝑧 〉 ) ) | 
						
							| 136 | 135 | ralrimiv | ⊢ ( ( 𝐶  ∈  𝐴  ∧  ( ℎ : ω ⟶ ( ω  ×  𝐴 )  ∧  ( ℎ ‘ ∅ )  =  〈 ∅ ,  𝐶 〉  ∧  ∀ 𝑘  ∈  ω ( ℎ ‘ suc  𝑘 )  ∈  ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) )  →  ∀ 𝑚  ∈  ω ∃ 𝑧 ( ℎ ‘ 𝑚 )  =  〈 𝑚 ,  𝑧 〉 ) | 
						
							| 137 |  | fveq2 | ⊢ ( 𝑚  =  𝑘  →  ( ℎ ‘ 𝑚 )  =  ( ℎ ‘ 𝑘 ) ) | 
						
							| 138 |  | opeq1 | ⊢ ( 𝑚  =  𝑘  →  〈 𝑚 ,  𝑧 〉  =  〈 𝑘 ,  𝑧 〉 ) | 
						
							| 139 | 137 138 | eqeq12d | ⊢ ( 𝑚  =  𝑘  →  ( ( ℎ ‘ 𝑚 )  =  〈 𝑚 ,  𝑧 〉  ↔  ( ℎ ‘ 𝑘 )  =  〈 𝑘 ,  𝑧 〉 ) ) | 
						
							| 140 | 139 | exbidv | ⊢ ( 𝑚  =  𝑘  →  ( ∃ 𝑧 ( ℎ ‘ 𝑚 )  =  〈 𝑚 ,  𝑧 〉  ↔  ∃ 𝑧 ( ℎ ‘ 𝑘 )  =  〈 𝑘 ,  𝑧 〉 ) ) | 
						
							| 141 | 140 | rspccv | ⊢ ( ∀ 𝑚  ∈  ω ∃ 𝑧 ( ℎ ‘ 𝑚 )  =  〈 𝑚 ,  𝑧 〉  →  ( 𝑘  ∈  ω  →  ∃ 𝑧 ( ℎ ‘ 𝑘 )  =  〈 𝑘 ,  𝑧 〉 ) ) | 
						
							| 142 | 136 141 | syl | ⊢ ( ( 𝐶  ∈  𝐴  ∧  ( ℎ : ω ⟶ ( ω  ×  𝐴 )  ∧  ( ℎ ‘ ∅ )  =  〈 ∅ ,  𝐶 〉  ∧  ∀ 𝑘  ∈  ω ( ℎ ‘ suc  𝑘 )  ∈  ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) )  →  ( 𝑘  ∈  ω  →  ∃ 𝑧 ( ℎ ‘ 𝑘 )  =  〈 𝑘 ,  𝑧 〉 ) ) | 
						
							| 143 | 142 | 3impia | ⊢ ( ( 𝐶  ∈  𝐴  ∧  ( ℎ : ω ⟶ ( ω  ×  𝐴 )  ∧  ( ℎ ‘ ∅ )  =  〈 ∅ ,  𝐶 〉  ∧  ∀ 𝑘  ∈  ω ( ℎ ‘ suc  𝑘 )  ∈  ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) )  ∧  𝑘  ∈  ω )  →  ∃ 𝑧 ( ℎ ‘ 𝑘 )  =  〈 𝑘 ,  𝑧 〉 ) | 
						
							| 144 |  | simp21 | ⊢ ( ( 𝐶  ∈  𝐴  ∧  ( ℎ : ω ⟶ ( ω  ×  𝐴 )  ∧  ( ℎ ‘ ∅ )  =  〈 ∅ ,  𝐶 〉  ∧  ∀ 𝑘  ∈  ω ( ℎ ‘ suc  𝑘 )  ∈  ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) )  ∧  𝑘  ∈  ω )  →  ℎ : ω ⟶ ( ω  ×  𝐴 ) ) | 
						
							| 145 |  | simp3 | ⊢ ( ( 𝐶  ∈  𝐴  ∧  ( ℎ : ω ⟶ ( ω  ×  𝐴 )  ∧  ( ℎ ‘ ∅ )  =  〈 ∅ ,  𝐶 〉  ∧  ∀ 𝑘  ∈  ω ( ℎ ‘ suc  𝑘 )  ∈  ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) )  ∧  𝑘  ∈  ω )  →  𝑘  ∈  ω ) | 
						
							| 146 |  | rspa | ⊢ ( ( ∀ 𝑘  ∈  ω ( ℎ ‘ suc  𝑘 )  ∈  ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) )  ∧  𝑘  ∈  ω )  →  ( ℎ ‘ suc  𝑘 )  ∈  ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) | 
						
							| 147 | 146 | 3ad2antl3 | ⊢ ( ( ( ℎ : ω ⟶ ( ω  ×  𝐴 )  ∧  ( ℎ ‘ ∅ )  =  〈 ∅ ,  𝐶 〉  ∧  ∀ 𝑘  ∈  ω ( ℎ ‘ suc  𝑘 )  ∈  ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) )  ∧  𝑘  ∈  ω )  →  ( ℎ ‘ suc  𝑘 )  ∈  ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) | 
						
							| 148 | 147 | 3adant1 | ⊢ ( ( 𝐶  ∈  𝐴  ∧  ( ℎ : ω ⟶ ( ω  ×  𝐴 )  ∧  ( ℎ ‘ ∅ )  =  〈 ∅ ,  𝐶 〉  ∧  ∀ 𝑘  ∈  ω ( ℎ ‘ suc  𝑘 )  ∈  ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) )  ∧  𝑘  ∈  ω )  →  ( ℎ ‘ suc  𝑘 )  ∈  ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) | 
						
							| 149 |  | simpl | ⊢ ( ( ( ℎ ‘ 𝑘 )  =  〈 𝑘 ,  𝑧 〉  ∧  ( ℎ : ω ⟶ ( ω  ×  𝐴 )  ∧  𝑘  ∈  ω ) )  →  ( ℎ ‘ 𝑘 )  =  〈 𝑘 ,  𝑧 〉 ) | 
						
							| 150 | 149 | fveq2d | ⊢ ( ( ( ℎ ‘ 𝑘 )  =  〈 𝑘 ,  𝑧 〉  ∧  ( ℎ : ω ⟶ ( ω  ×  𝐴 )  ∧  𝑘  ∈  ω ) )  →  ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) )  =  ( 𝐺 ‘ 〈 𝑘 ,  𝑧 〉 ) ) | 
						
							| 151 |  | simprr | ⊢ ( ( ( ℎ ‘ 𝑘 )  =  〈 𝑘 ,  𝑧 〉  ∧  ( ℎ : ω ⟶ ( ω  ×  𝐴 )  ∧  𝑘  ∈  ω ) )  →  𝑘  ∈  ω ) | 
						
							| 152 |  | eleq1 | ⊢ ( ( ℎ ‘ 𝑘 )  =  〈 𝑘 ,  𝑧 〉  →  ( ( ℎ ‘ 𝑘 )  ∈  ( ω  ×  𝐴 )  ↔  〈 𝑘 ,  𝑧 〉  ∈  ( ω  ×  𝐴 ) ) ) | 
						
							| 153 |  | opelxp2 | ⊢ ( 〈 𝑘 ,  𝑧 〉  ∈  ( ω  ×  𝐴 )  →  𝑧  ∈  𝐴 ) | 
						
							| 154 | 152 153 | biimtrdi | ⊢ ( ( ℎ ‘ 𝑘 )  =  〈 𝑘 ,  𝑧 〉  →  ( ( ℎ ‘ 𝑘 )  ∈  ( ω  ×  𝐴 )  →  𝑧  ∈  𝐴 ) ) | 
						
							| 155 |  | ffvelcdm | ⊢ ( ( ℎ : ω ⟶ ( ω  ×  𝐴 )  ∧  𝑘  ∈  ω )  →  ( ℎ ‘ 𝑘 )  ∈  ( ω  ×  𝐴 ) ) | 
						
							| 156 | 154 155 | impel | ⊢ ( ( ( ℎ ‘ 𝑘 )  =  〈 𝑘 ,  𝑧 〉  ∧  ( ℎ : ω ⟶ ( ω  ×  𝐴 )  ∧  𝑘  ∈  ω ) )  →  𝑧  ∈  𝐴 ) | 
						
							| 157 |  | df-ov | ⊢ ( 𝑘 𝐺 𝑧 )  =  ( 𝐺 ‘ 〈 𝑘 ,  𝑧 〉 ) | 
						
							| 158 |  | suceq | ⊢ ( 𝑛  =  𝑘  →  suc  𝑛  =  suc  𝑘 ) | 
						
							| 159 | 158 | sneqd | ⊢ ( 𝑛  =  𝑘  →  { suc  𝑛 }  =  { suc  𝑘 } ) | 
						
							| 160 |  | oveq1 | ⊢ ( 𝑛  =  𝑘  →  ( 𝑛 𝐹 𝑥 )  =  ( 𝑘 𝐹 𝑥 ) ) | 
						
							| 161 | 159 160 | xpeq12d | ⊢ ( 𝑛  =  𝑘  →  ( { suc  𝑛 }  ×  ( 𝑛 𝐹 𝑥 ) )  =  ( { suc  𝑘 }  ×  ( 𝑘 𝐹 𝑥 ) ) ) | 
						
							| 162 |  | oveq2 | ⊢ ( 𝑥  =  𝑧  →  ( 𝑘 𝐹 𝑥 )  =  ( 𝑘 𝐹 𝑧 ) ) | 
						
							| 163 | 162 | xpeq2d | ⊢ ( 𝑥  =  𝑧  →  ( { suc  𝑘 }  ×  ( 𝑘 𝐹 𝑥 ) )  =  ( { suc  𝑘 }  ×  ( 𝑘 𝐹 𝑧 ) ) ) | 
						
							| 164 |  | snex | ⊢ { suc  𝑘 }  ∈  V | 
						
							| 165 |  | ovex | ⊢ ( 𝑘 𝐹 𝑧 )  ∈  V | 
						
							| 166 | 164 165 | xpex | ⊢ ( { suc  𝑘 }  ×  ( 𝑘 𝐹 𝑧 ) )  ∈  V | 
						
							| 167 | 161 163 2 166 | ovmpo | ⊢ ( ( 𝑘  ∈  ω  ∧  𝑧  ∈  𝐴 )  →  ( 𝑘 𝐺 𝑧 )  =  ( { suc  𝑘 }  ×  ( 𝑘 𝐹 𝑧 ) ) ) | 
						
							| 168 | 157 167 | eqtr3id | ⊢ ( ( 𝑘  ∈  ω  ∧  𝑧  ∈  𝐴 )  →  ( 𝐺 ‘ 〈 𝑘 ,  𝑧 〉 )  =  ( { suc  𝑘 }  ×  ( 𝑘 𝐹 𝑧 ) ) ) | 
						
							| 169 | 151 156 168 | syl2anc | ⊢ ( ( ( ℎ ‘ 𝑘 )  =  〈 𝑘 ,  𝑧 〉  ∧  ( ℎ : ω ⟶ ( ω  ×  𝐴 )  ∧  𝑘  ∈  ω ) )  →  ( 𝐺 ‘ 〈 𝑘 ,  𝑧 〉 )  =  ( { suc  𝑘 }  ×  ( 𝑘 𝐹 𝑧 ) ) ) | 
						
							| 170 | 150 169 | eqtrd | ⊢ ( ( ( ℎ ‘ 𝑘 )  =  〈 𝑘 ,  𝑧 〉  ∧  ( ℎ : ω ⟶ ( ω  ×  𝐴 )  ∧  𝑘  ∈  ω ) )  →  ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) )  =  ( { suc  𝑘 }  ×  ( 𝑘 𝐹 𝑧 ) ) ) | 
						
							| 171 | 170 | eleq2d | ⊢ ( ( ( ℎ ‘ 𝑘 )  =  〈 𝑘 ,  𝑧 〉  ∧  ( ℎ : ω ⟶ ( ω  ×  𝐴 )  ∧  𝑘  ∈  ω ) )  →  ( ( ℎ ‘ suc  𝑘 )  ∈  ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) )  ↔  ( ℎ ‘ suc  𝑘 )  ∈  ( { suc  𝑘 }  ×  ( 𝑘 𝐹 𝑧 ) ) ) ) | 
						
							| 172 |  | elxp | ⊢ ( ( ℎ ‘ suc  𝑘 )  ∈  ( { suc  𝑘 }  ×  ( 𝑘 𝐹 𝑧 ) )  ↔  ∃ 𝑠 ∃ 𝑡 ( ( ℎ ‘ suc  𝑘 )  =  〈 𝑠 ,  𝑡 〉  ∧  ( 𝑠  ∈  { suc  𝑘 }  ∧  𝑡  ∈  ( 𝑘 𝐹 𝑧 ) ) ) ) | 
						
							| 173 |  | peano2 | ⊢ ( 𝑘  ∈  ω  →  suc  𝑘  ∈  ω ) | 
						
							| 174 |  | fvco3 | ⊢ ( ( ℎ : ω ⟶ ( ω  ×  𝐴 )  ∧  suc  𝑘  ∈  ω )  →  ( ( 2nd   ∘  ℎ ) ‘ suc  𝑘 )  =  ( 2nd  ‘ ( ℎ ‘ suc  𝑘 ) ) ) | 
						
							| 175 | 173 174 | sylan2 | ⊢ ( ( ℎ : ω ⟶ ( ω  ×  𝐴 )  ∧  𝑘  ∈  ω )  →  ( ( 2nd   ∘  ℎ ) ‘ suc  𝑘 )  =  ( 2nd  ‘ ( ℎ ‘ suc  𝑘 ) ) ) | 
						
							| 176 | 175 | adantl | ⊢ ( ( ( ( ℎ ‘ suc  𝑘 )  =  〈 𝑠 ,  𝑡 〉  ∧  ( ℎ ‘ 𝑘 )  =  〈 𝑘 ,  𝑧 〉 )  ∧  ( ℎ : ω ⟶ ( ω  ×  𝐴 )  ∧  𝑘  ∈  ω ) )  →  ( ( 2nd   ∘  ℎ ) ‘ suc  𝑘 )  =  ( 2nd  ‘ ( ℎ ‘ suc  𝑘 ) ) ) | 
						
							| 177 |  | simpll | ⊢ ( ( ( ( ℎ ‘ suc  𝑘 )  =  〈 𝑠 ,  𝑡 〉  ∧  ( ℎ ‘ 𝑘 )  =  〈 𝑘 ,  𝑧 〉 )  ∧  ( ℎ : ω ⟶ ( ω  ×  𝐴 )  ∧  𝑘  ∈  ω ) )  →  ( ℎ ‘ suc  𝑘 )  =  〈 𝑠 ,  𝑡 〉 ) | 
						
							| 178 | 177 | fveq2d | ⊢ ( ( ( ( ℎ ‘ suc  𝑘 )  =  〈 𝑠 ,  𝑡 〉  ∧  ( ℎ ‘ 𝑘 )  =  〈 𝑘 ,  𝑧 〉 )  ∧  ( ℎ : ω ⟶ ( ω  ×  𝐴 )  ∧  𝑘  ∈  ω ) )  →  ( 2nd  ‘ ( ℎ ‘ suc  𝑘 ) )  =  ( 2nd  ‘ 〈 𝑠 ,  𝑡 〉 ) ) | 
						
							| 179 | 176 178 | eqtrd | ⊢ ( ( ( ( ℎ ‘ suc  𝑘 )  =  〈 𝑠 ,  𝑡 〉  ∧  ( ℎ ‘ 𝑘 )  =  〈 𝑘 ,  𝑧 〉 )  ∧  ( ℎ : ω ⟶ ( ω  ×  𝐴 )  ∧  𝑘  ∈  ω ) )  →  ( ( 2nd   ∘  ℎ ) ‘ suc  𝑘 )  =  ( 2nd  ‘ 〈 𝑠 ,  𝑡 〉 ) ) | 
						
							| 180 |  | vex | ⊢ 𝑠  ∈  V | 
						
							| 181 |  | vex | ⊢ 𝑡  ∈  V | 
						
							| 182 | 180 181 | op2nd | ⊢ ( 2nd  ‘ 〈 𝑠 ,  𝑡 〉 )  =  𝑡 | 
						
							| 183 | 179 182 | eqtrdi | ⊢ ( ( ( ( ℎ ‘ suc  𝑘 )  =  〈 𝑠 ,  𝑡 〉  ∧  ( ℎ ‘ 𝑘 )  =  〈 𝑘 ,  𝑧 〉 )  ∧  ( ℎ : ω ⟶ ( ω  ×  𝐴 )  ∧  𝑘  ∈  ω ) )  →  ( ( 2nd   ∘  ℎ ) ‘ suc  𝑘 )  =  𝑡 ) | 
						
							| 184 |  | fvco3 | ⊢ ( ( ℎ : ω ⟶ ( ω  ×  𝐴 )  ∧  𝑘  ∈  ω )  →  ( ( 2nd   ∘  ℎ ) ‘ 𝑘 )  =  ( 2nd  ‘ ( ℎ ‘ 𝑘 ) ) ) | 
						
							| 185 | 184 | adantl | ⊢ ( ( ( ( ℎ ‘ suc  𝑘 )  =  〈 𝑠 ,  𝑡 〉  ∧  ( ℎ ‘ 𝑘 )  =  〈 𝑘 ,  𝑧 〉 )  ∧  ( ℎ : ω ⟶ ( ω  ×  𝐴 )  ∧  𝑘  ∈  ω ) )  →  ( ( 2nd   ∘  ℎ ) ‘ 𝑘 )  =  ( 2nd  ‘ ( ℎ ‘ 𝑘 ) ) ) | 
						
							| 186 |  | simplr | ⊢ ( ( ( ( ℎ ‘ suc  𝑘 )  =  〈 𝑠 ,  𝑡 〉  ∧  ( ℎ ‘ 𝑘 )  =  〈 𝑘 ,  𝑧 〉 )  ∧  ( ℎ : ω ⟶ ( ω  ×  𝐴 )  ∧  𝑘  ∈  ω ) )  →  ( ℎ ‘ 𝑘 )  =  〈 𝑘 ,  𝑧 〉 ) | 
						
							| 187 | 186 | fveq2d | ⊢ ( ( ( ( ℎ ‘ suc  𝑘 )  =  〈 𝑠 ,  𝑡 〉  ∧  ( ℎ ‘ 𝑘 )  =  〈 𝑘 ,  𝑧 〉 )  ∧  ( ℎ : ω ⟶ ( ω  ×  𝐴 )  ∧  𝑘  ∈  ω ) )  →  ( 2nd  ‘ ( ℎ ‘ 𝑘 ) )  =  ( 2nd  ‘ 〈 𝑘 ,  𝑧 〉 ) ) | 
						
							| 188 | 185 187 | eqtrd | ⊢ ( ( ( ( ℎ ‘ suc  𝑘 )  =  〈 𝑠 ,  𝑡 〉  ∧  ( ℎ ‘ 𝑘 )  =  〈 𝑘 ,  𝑧 〉 )  ∧  ( ℎ : ω ⟶ ( ω  ×  𝐴 )  ∧  𝑘  ∈  ω ) )  →  ( ( 2nd   ∘  ℎ ) ‘ 𝑘 )  =  ( 2nd  ‘ 〈 𝑘 ,  𝑧 〉 ) ) | 
						
							| 189 |  | vex | ⊢ 𝑘  ∈  V | 
						
							| 190 |  | vex | ⊢ 𝑧  ∈  V | 
						
							| 191 | 189 190 | op2nd | ⊢ ( 2nd  ‘ 〈 𝑘 ,  𝑧 〉 )  =  𝑧 | 
						
							| 192 | 188 191 | eqtrdi | ⊢ ( ( ( ( ℎ ‘ suc  𝑘 )  =  〈 𝑠 ,  𝑡 〉  ∧  ( ℎ ‘ 𝑘 )  =  〈 𝑘 ,  𝑧 〉 )  ∧  ( ℎ : ω ⟶ ( ω  ×  𝐴 )  ∧  𝑘  ∈  ω ) )  →  ( ( 2nd   ∘  ℎ ) ‘ 𝑘 )  =  𝑧 ) | 
						
							| 193 | 192 | oveq2d | ⊢ ( ( ( ( ℎ ‘ suc  𝑘 )  =  〈 𝑠 ,  𝑡 〉  ∧  ( ℎ ‘ 𝑘 )  =  〈 𝑘 ,  𝑧 〉 )  ∧  ( ℎ : ω ⟶ ( ω  ×  𝐴 )  ∧  𝑘  ∈  ω ) )  →  ( 𝑘 𝐹 ( ( 2nd   ∘  ℎ ) ‘ 𝑘 ) )  =  ( 𝑘 𝐹 𝑧 ) ) | 
						
							| 194 | 183 193 | eleq12d | ⊢ ( ( ( ( ℎ ‘ suc  𝑘 )  =  〈 𝑠 ,  𝑡 〉  ∧  ( ℎ ‘ 𝑘 )  =  〈 𝑘 ,  𝑧 〉 )  ∧  ( ℎ : ω ⟶ ( ω  ×  𝐴 )  ∧  𝑘  ∈  ω ) )  →  ( ( ( 2nd   ∘  ℎ ) ‘ suc  𝑘 )  ∈  ( 𝑘 𝐹 ( ( 2nd   ∘  ℎ ) ‘ 𝑘 ) )  ↔  𝑡  ∈  ( 𝑘 𝐹 𝑧 ) ) ) | 
						
							| 195 | 194 | biimprcd | ⊢ ( 𝑡  ∈  ( 𝑘 𝐹 𝑧 )  →  ( ( ( ( ℎ ‘ suc  𝑘 )  =  〈 𝑠 ,  𝑡 〉  ∧  ( ℎ ‘ 𝑘 )  =  〈 𝑘 ,  𝑧 〉 )  ∧  ( ℎ : ω ⟶ ( ω  ×  𝐴 )  ∧  𝑘  ∈  ω ) )  →  ( ( 2nd   ∘  ℎ ) ‘ suc  𝑘 )  ∈  ( 𝑘 𝐹 ( ( 2nd   ∘  ℎ ) ‘ 𝑘 ) ) ) ) | 
						
							| 196 | 195 | exp4c | ⊢ ( 𝑡  ∈  ( 𝑘 𝐹 𝑧 )  →  ( ( ℎ ‘ suc  𝑘 )  =  〈 𝑠 ,  𝑡 〉  →  ( ( ℎ ‘ 𝑘 )  =  〈 𝑘 ,  𝑧 〉  →  ( ( ℎ : ω ⟶ ( ω  ×  𝐴 )  ∧  𝑘  ∈  ω )  →  ( ( 2nd   ∘  ℎ ) ‘ suc  𝑘 )  ∈  ( 𝑘 𝐹 ( ( 2nd   ∘  ℎ ) ‘ 𝑘 ) ) ) ) ) ) | 
						
							| 197 | 196 | adantl | ⊢ ( ( 𝑠  ∈  { suc  𝑘 }  ∧  𝑡  ∈  ( 𝑘 𝐹 𝑧 ) )  →  ( ( ℎ ‘ suc  𝑘 )  =  〈 𝑠 ,  𝑡 〉  →  ( ( ℎ ‘ 𝑘 )  =  〈 𝑘 ,  𝑧 〉  →  ( ( ℎ : ω ⟶ ( ω  ×  𝐴 )  ∧  𝑘  ∈  ω )  →  ( ( 2nd   ∘  ℎ ) ‘ suc  𝑘 )  ∈  ( 𝑘 𝐹 ( ( 2nd   ∘  ℎ ) ‘ 𝑘 ) ) ) ) ) ) | 
						
							| 198 | 197 | impcom | ⊢ ( ( ( ℎ ‘ suc  𝑘 )  =  〈 𝑠 ,  𝑡 〉  ∧  ( 𝑠  ∈  { suc  𝑘 }  ∧  𝑡  ∈  ( 𝑘 𝐹 𝑧 ) ) )  →  ( ( ℎ ‘ 𝑘 )  =  〈 𝑘 ,  𝑧 〉  →  ( ( ℎ : ω ⟶ ( ω  ×  𝐴 )  ∧  𝑘  ∈  ω )  →  ( ( 2nd   ∘  ℎ ) ‘ suc  𝑘 )  ∈  ( 𝑘 𝐹 ( ( 2nd   ∘  ℎ ) ‘ 𝑘 ) ) ) ) ) | 
						
							| 199 | 198 | exlimivv | ⊢ ( ∃ 𝑠 ∃ 𝑡 ( ( ℎ ‘ suc  𝑘 )  =  〈 𝑠 ,  𝑡 〉  ∧  ( 𝑠  ∈  { suc  𝑘 }  ∧  𝑡  ∈  ( 𝑘 𝐹 𝑧 ) ) )  →  ( ( ℎ ‘ 𝑘 )  =  〈 𝑘 ,  𝑧 〉  →  ( ( ℎ : ω ⟶ ( ω  ×  𝐴 )  ∧  𝑘  ∈  ω )  →  ( ( 2nd   ∘  ℎ ) ‘ suc  𝑘 )  ∈  ( 𝑘 𝐹 ( ( 2nd   ∘  ℎ ) ‘ 𝑘 ) ) ) ) ) | 
						
							| 200 | 172 199 | sylbi | ⊢ ( ( ℎ ‘ suc  𝑘 )  ∈  ( { suc  𝑘 }  ×  ( 𝑘 𝐹 𝑧 ) )  →  ( ( ℎ ‘ 𝑘 )  =  〈 𝑘 ,  𝑧 〉  →  ( ( ℎ : ω ⟶ ( ω  ×  𝐴 )  ∧  𝑘  ∈  ω )  →  ( ( 2nd   ∘  ℎ ) ‘ suc  𝑘 )  ∈  ( 𝑘 𝐹 ( ( 2nd   ∘  ℎ ) ‘ 𝑘 ) ) ) ) ) | 
						
							| 201 | 200 | com3l | ⊢ ( ( ℎ ‘ 𝑘 )  =  〈 𝑘 ,  𝑧 〉  →  ( ( ℎ : ω ⟶ ( ω  ×  𝐴 )  ∧  𝑘  ∈  ω )  →  ( ( ℎ ‘ suc  𝑘 )  ∈  ( { suc  𝑘 }  ×  ( 𝑘 𝐹 𝑧 ) )  →  ( ( 2nd   ∘  ℎ ) ‘ suc  𝑘 )  ∈  ( 𝑘 𝐹 ( ( 2nd   ∘  ℎ ) ‘ 𝑘 ) ) ) ) ) | 
						
							| 202 | 201 | imp | ⊢ ( ( ( ℎ ‘ 𝑘 )  =  〈 𝑘 ,  𝑧 〉  ∧  ( ℎ : ω ⟶ ( ω  ×  𝐴 )  ∧  𝑘  ∈  ω ) )  →  ( ( ℎ ‘ suc  𝑘 )  ∈  ( { suc  𝑘 }  ×  ( 𝑘 𝐹 𝑧 ) )  →  ( ( 2nd   ∘  ℎ ) ‘ suc  𝑘 )  ∈  ( 𝑘 𝐹 ( ( 2nd   ∘  ℎ ) ‘ 𝑘 ) ) ) ) | 
						
							| 203 | 171 202 | sylbid | ⊢ ( ( ( ℎ ‘ 𝑘 )  =  〈 𝑘 ,  𝑧 〉  ∧  ( ℎ : ω ⟶ ( ω  ×  𝐴 )  ∧  𝑘  ∈  ω ) )  →  ( ( ℎ ‘ suc  𝑘 )  ∈  ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) )  →  ( ( 2nd   ∘  ℎ ) ‘ suc  𝑘 )  ∈  ( 𝑘 𝐹 ( ( 2nd   ∘  ℎ ) ‘ 𝑘 ) ) ) ) | 
						
							| 204 | 203 | ex | ⊢ ( ( ℎ ‘ 𝑘 )  =  〈 𝑘 ,  𝑧 〉  →  ( ( ℎ : ω ⟶ ( ω  ×  𝐴 )  ∧  𝑘  ∈  ω )  →  ( ( ℎ ‘ suc  𝑘 )  ∈  ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) )  →  ( ( 2nd   ∘  ℎ ) ‘ suc  𝑘 )  ∈  ( 𝑘 𝐹 ( ( 2nd   ∘  ℎ ) ‘ 𝑘 ) ) ) ) ) | 
						
							| 205 | 204 | exlimiv | ⊢ ( ∃ 𝑧 ( ℎ ‘ 𝑘 )  =  〈 𝑘 ,  𝑧 〉  →  ( ( ℎ : ω ⟶ ( ω  ×  𝐴 )  ∧  𝑘  ∈  ω )  →  ( ( ℎ ‘ suc  𝑘 )  ∈  ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) )  →  ( ( 2nd   ∘  ℎ ) ‘ suc  𝑘 )  ∈  ( 𝑘 𝐹 ( ( 2nd   ∘  ℎ ) ‘ 𝑘 ) ) ) ) ) | 
						
							| 206 | 205 | 3imp | ⊢ ( ( ∃ 𝑧 ( ℎ ‘ 𝑘 )  =  〈 𝑘 ,  𝑧 〉  ∧  ( ℎ : ω ⟶ ( ω  ×  𝐴 )  ∧  𝑘  ∈  ω )  ∧  ( ℎ ‘ suc  𝑘 )  ∈  ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) )  →  ( ( 2nd   ∘  ℎ ) ‘ suc  𝑘 )  ∈  ( 𝑘 𝐹 ( ( 2nd   ∘  ℎ ) ‘ 𝑘 ) ) ) | 
						
							| 207 | 143 144 145 148 206 | syl121anc | ⊢ ( ( 𝐶  ∈  𝐴  ∧  ( ℎ : ω ⟶ ( ω  ×  𝐴 )  ∧  ( ℎ ‘ ∅ )  =  〈 ∅ ,  𝐶 〉  ∧  ∀ 𝑘  ∈  ω ( ℎ ‘ suc  𝑘 )  ∈  ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) )  ∧  𝑘  ∈  ω )  →  ( ( 2nd   ∘  ℎ ) ‘ suc  𝑘 )  ∈  ( 𝑘 𝐹 ( ( 2nd   ∘  ℎ ) ‘ 𝑘 ) ) ) | 
						
							| 208 | 207 | 3expia | ⊢ ( ( 𝐶  ∈  𝐴  ∧  ( ℎ : ω ⟶ ( ω  ×  𝐴 )  ∧  ( ℎ ‘ ∅ )  =  〈 ∅ ,  𝐶 〉  ∧  ∀ 𝑘  ∈  ω ( ℎ ‘ suc  𝑘 )  ∈  ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) )  →  ( 𝑘  ∈  ω  →  ( ( 2nd   ∘  ℎ ) ‘ suc  𝑘 )  ∈  ( 𝑘 𝐹 ( ( 2nd   ∘  ℎ ) ‘ 𝑘 ) ) ) ) | 
						
							| 209 | 64 208 | ralrimi | ⊢ ( ( 𝐶  ∈  𝐴  ∧  ( ℎ : ω ⟶ ( ω  ×  𝐴 )  ∧  ( ℎ ‘ ∅ )  =  〈 ∅ ,  𝐶 〉  ∧  ∀ 𝑘  ∈  ω ( ℎ ‘ suc  𝑘 )  ∈  ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) )  →  ∀ 𝑘  ∈  ω ( ( 2nd   ∘  ℎ ) ‘ suc  𝑘 )  ∈  ( 𝑘 𝐹 ( ( 2nd   ∘  ℎ ) ‘ 𝑘 ) ) ) | 
						
							| 210 | 46 58 209 | 3jca | ⊢ ( ( 𝐶  ∈  𝐴  ∧  ( ℎ : ω ⟶ ( ω  ×  𝐴 )  ∧  ( ℎ ‘ ∅ )  =  〈 ∅ ,  𝐶 〉  ∧  ∀ 𝑘  ∈  ω ( ℎ ‘ suc  𝑘 )  ∈  ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) )  →  ( ( 2nd   ∘  ℎ ) : ω ⟶ 𝐴  ∧  ( ( 2nd   ∘  ℎ ) ‘ ∅ )  =  𝐶  ∧  ∀ 𝑘  ∈  ω ( ( 2nd   ∘  ℎ ) ‘ suc  𝑘 )  ∈  ( 𝑘 𝐹 ( ( 2nd   ∘  ℎ ) ‘ 𝑘 ) ) ) ) | 
						
							| 211 |  | feq1 | ⊢ ( 𝑔  =  ( 2nd   ∘  ℎ )  →  ( 𝑔 : ω ⟶ 𝐴  ↔  ( 2nd   ∘  ℎ ) : ω ⟶ 𝐴 ) ) | 
						
							| 212 |  | fveq1 | ⊢ ( 𝑔  =  ( 2nd   ∘  ℎ )  →  ( 𝑔 ‘ ∅ )  =  ( ( 2nd   ∘  ℎ ) ‘ ∅ ) ) | 
						
							| 213 | 212 | eqeq1d | ⊢ ( 𝑔  =  ( 2nd   ∘  ℎ )  →  ( ( 𝑔 ‘ ∅ )  =  𝐶  ↔  ( ( 2nd   ∘  ℎ ) ‘ ∅ )  =  𝐶 ) ) | 
						
							| 214 |  | fveq1 | ⊢ ( 𝑔  =  ( 2nd   ∘  ℎ )  →  ( 𝑔 ‘ suc  𝑘 )  =  ( ( 2nd   ∘  ℎ ) ‘ suc  𝑘 ) ) | 
						
							| 215 |  | fveq1 | ⊢ ( 𝑔  =  ( 2nd   ∘  ℎ )  →  ( 𝑔 ‘ 𝑘 )  =  ( ( 2nd   ∘  ℎ ) ‘ 𝑘 ) ) | 
						
							| 216 | 215 | oveq2d | ⊢ ( 𝑔  =  ( 2nd   ∘  ℎ )  →  ( 𝑘 𝐹 ( 𝑔 ‘ 𝑘 ) )  =  ( 𝑘 𝐹 ( ( 2nd   ∘  ℎ ) ‘ 𝑘 ) ) ) | 
						
							| 217 | 214 216 | eleq12d | ⊢ ( 𝑔  =  ( 2nd   ∘  ℎ )  →  ( ( 𝑔 ‘ suc  𝑘 )  ∈  ( 𝑘 𝐹 ( 𝑔 ‘ 𝑘 ) )  ↔  ( ( 2nd   ∘  ℎ ) ‘ suc  𝑘 )  ∈  ( 𝑘 𝐹 ( ( 2nd   ∘  ℎ ) ‘ 𝑘 ) ) ) ) | 
						
							| 218 | 217 | ralbidv | ⊢ ( 𝑔  =  ( 2nd   ∘  ℎ )  →  ( ∀ 𝑘  ∈  ω ( 𝑔 ‘ suc  𝑘 )  ∈  ( 𝑘 𝐹 ( 𝑔 ‘ 𝑘 ) )  ↔  ∀ 𝑘  ∈  ω ( ( 2nd   ∘  ℎ ) ‘ suc  𝑘 )  ∈  ( 𝑘 𝐹 ( ( 2nd   ∘  ℎ ) ‘ 𝑘 ) ) ) ) | 
						
							| 219 | 211 213 218 | 3anbi123d | ⊢ ( 𝑔  =  ( 2nd   ∘  ℎ )  →  ( ( 𝑔 : ω ⟶ 𝐴  ∧  ( 𝑔 ‘ ∅ )  =  𝐶  ∧  ∀ 𝑘  ∈  ω ( 𝑔 ‘ suc  𝑘 )  ∈  ( 𝑘 𝐹 ( 𝑔 ‘ 𝑘 ) ) )  ↔  ( ( 2nd   ∘  ℎ ) : ω ⟶ 𝐴  ∧  ( ( 2nd   ∘  ℎ ) ‘ ∅ )  =  𝐶  ∧  ∀ 𝑘  ∈  ω ( ( 2nd   ∘  ℎ ) ‘ suc  𝑘 )  ∈  ( 𝑘 𝐹 ( ( 2nd   ∘  ℎ ) ‘ 𝑘 ) ) ) ) ) | 
						
							| 220 | 49 210 219 | spcedv | ⊢ ( ( 𝐶  ∈  𝐴  ∧  ( ℎ : ω ⟶ ( ω  ×  𝐴 )  ∧  ( ℎ ‘ ∅ )  =  〈 ∅ ,  𝐶 〉  ∧  ∀ 𝑘  ∈  ω ( ℎ ‘ suc  𝑘 )  ∈  ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) )  →  ∃ 𝑔 ( 𝑔 : ω ⟶ 𝐴  ∧  ( 𝑔 ‘ ∅ )  =  𝐶  ∧  ∀ 𝑘  ∈  ω ( 𝑔 ‘ suc  𝑘 )  ∈  ( 𝑘 𝐹 ( 𝑔 ‘ 𝑘 ) ) ) ) | 
						
							| 221 | 220 | ex | ⊢ ( 𝐶  ∈  𝐴  →  ( ( ℎ : ω ⟶ ( ω  ×  𝐴 )  ∧  ( ℎ ‘ ∅ )  =  〈 ∅ ,  𝐶 〉  ∧  ∀ 𝑘  ∈  ω ( ℎ ‘ suc  𝑘 )  ∈  ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) )  →  ∃ 𝑔 ( 𝑔 : ω ⟶ 𝐴  ∧  ( 𝑔 ‘ ∅ )  =  𝐶  ∧  ∀ 𝑘  ∈  ω ( 𝑔 ‘ suc  𝑘 )  ∈  ( 𝑘 𝐹 ( 𝑔 ‘ 𝑘 ) ) ) ) ) | 
						
							| 222 | 221 | exlimdv | ⊢ ( 𝐶  ∈  𝐴  →  ( ∃ ℎ ( ℎ : ω ⟶ ( ω  ×  𝐴 )  ∧  ( ℎ ‘ ∅ )  =  〈 ∅ ,  𝐶 〉  ∧  ∀ 𝑘  ∈  ω ( ℎ ‘ suc  𝑘 )  ∈  ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) )  →  ∃ 𝑔 ( 𝑔 : ω ⟶ 𝐴  ∧  ( 𝑔 ‘ ∅ )  =  𝐶  ∧  ∀ 𝑘  ∈  ω ( 𝑔 ‘ suc  𝑘 )  ∈  ( 𝑘 𝐹 ( 𝑔 ‘ 𝑘 ) ) ) ) ) | 
						
							| 223 | 222 | adantr | ⊢ ( ( 𝐶  ∈  𝐴  ∧  𝐹 : ( ω  ×  𝐴 ) ⟶ ( 𝒫  𝐴  ∖  { ∅ } ) )  →  ( ∃ ℎ ( ℎ : ω ⟶ ( ω  ×  𝐴 )  ∧  ( ℎ ‘ ∅ )  =  〈 ∅ ,  𝐶 〉  ∧  ∀ 𝑘  ∈  ω ( ℎ ‘ suc  𝑘 )  ∈  ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) )  →  ∃ 𝑔 ( 𝑔 : ω ⟶ 𝐴  ∧  ( 𝑔 ‘ ∅ )  =  𝐶  ∧  ∀ 𝑘  ∈  ω ( 𝑔 ‘ suc  𝑘 )  ∈  ( 𝑘 𝐹 ( 𝑔 ‘ 𝑘 ) ) ) ) ) | 
						
							| 224 | 43 223 | mpd | ⊢ ( ( 𝐶  ∈  𝐴  ∧  𝐹 : ( ω  ×  𝐴 ) ⟶ ( 𝒫  𝐴  ∖  { ∅ } ) )  →  ∃ 𝑔 ( 𝑔 : ω ⟶ 𝐴  ∧  ( 𝑔 ‘ ∅ )  =  𝐶  ∧  ∀ 𝑘  ∈  ω ( 𝑔 ‘ suc  𝑘 )  ∈  ( 𝑘 𝐹 ( 𝑔 ‘ 𝑘 ) ) ) ) |