Step |
Hyp |
Ref |
Expression |
1 |
|
axdc4lem.1 |
⊢ 𝐴 ∈ V |
2 |
|
axdc4lem.2 |
⊢ 𝐺 = ( 𝑛 ∈ ω , 𝑥 ∈ 𝐴 ↦ ( { suc 𝑛 } × ( 𝑛 𝐹 𝑥 ) ) ) |
3 |
|
peano1 |
⊢ ∅ ∈ ω |
4 |
|
opelxpi |
⊢ ( ( ∅ ∈ ω ∧ 𝐶 ∈ 𝐴 ) → 〈 ∅ , 𝐶 〉 ∈ ( ω × 𝐴 ) ) |
5 |
3 4
|
mpan |
⊢ ( 𝐶 ∈ 𝐴 → 〈 ∅ , 𝐶 〉 ∈ ( ω × 𝐴 ) ) |
6 |
|
simp2 |
⊢ ( ( 𝐹 : ( ω × 𝐴 ) ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) ∧ 𝑛 ∈ ω ∧ 𝑥 ∈ 𝐴 ) → 𝑛 ∈ ω ) |
7 |
|
fovrn |
⊢ ( ( 𝐹 : ( ω × 𝐴 ) ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) ∧ 𝑛 ∈ ω ∧ 𝑥 ∈ 𝐴 ) → ( 𝑛 𝐹 𝑥 ) ∈ ( 𝒫 𝐴 ∖ { ∅ } ) ) |
8 |
|
peano2 |
⊢ ( 𝑛 ∈ ω → suc 𝑛 ∈ ω ) |
9 |
8
|
snssd |
⊢ ( 𝑛 ∈ ω → { suc 𝑛 } ⊆ ω ) |
10 |
|
eldifi |
⊢ ( ( 𝑛 𝐹 𝑥 ) ∈ ( 𝒫 𝐴 ∖ { ∅ } ) → ( 𝑛 𝐹 𝑥 ) ∈ 𝒫 𝐴 ) |
11 |
1
|
elpw2 |
⊢ ( ( 𝑛 𝐹 𝑥 ) ∈ 𝒫 𝐴 ↔ ( 𝑛 𝐹 𝑥 ) ⊆ 𝐴 ) |
12 |
|
xpss12 |
⊢ ( ( { suc 𝑛 } ⊆ ω ∧ ( 𝑛 𝐹 𝑥 ) ⊆ 𝐴 ) → ( { suc 𝑛 } × ( 𝑛 𝐹 𝑥 ) ) ⊆ ( ω × 𝐴 ) ) |
13 |
11 12
|
sylan2b |
⊢ ( ( { suc 𝑛 } ⊆ ω ∧ ( 𝑛 𝐹 𝑥 ) ∈ 𝒫 𝐴 ) → ( { suc 𝑛 } × ( 𝑛 𝐹 𝑥 ) ) ⊆ ( ω × 𝐴 ) ) |
14 |
9 10 13
|
syl2an |
⊢ ( ( 𝑛 ∈ ω ∧ ( 𝑛 𝐹 𝑥 ) ∈ ( 𝒫 𝐴 ∖ { ∅ } ) ) → ( { suc 𝑛 } × ( 𝑛 𝐹 𝑥 ) ) ⊆ ( ω × 𝐴 ) ) |
15 |
|
snex |
⊢ { suc 𝑛 } ∈ V |
16 |
|
ovex |
⊢ ( 𝑛 𝐹 𝑥 ) ∈ V |
17 |
15 16
|
xpex |
⊢ ( { suc 𝑛 } × ( 𝑛 𝐹 𝑥 ) ) ∈ V |
18 |
17
|
elpw |
⊢ ( ( { suc 𝑛 } × ( 𝑛 𝐹 𝑥 ) ) ∈ 𝒫 ( ω × 𝐴 ) ↔ ( { suc 𝑛 } × ( 𝑛 𝐹 𝑥 ) ) ⊆ ( ω × 𝐴 ) ) |
19 |
14 18
|
sylibr |
⊢ ( ( 𝑛 ∈ ω ∧ ( 𝑛 𝐹 𝑥 ) ∈ ( 𝒫 𝐴 ∖ { ∅ } ) ) → ( { suc 𝑛 } × ( 𝑛 𝐹 𝑥 ) ) ∈ 𝒫 ( ω × 𝐴 ) ) |
20 |
6 7 19
|
syl2anc |
⊢ ( ( 𝐹 : ( ω × 𝐴 ) ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) ∧ 𝑛 ∈ ω ∧ 𝑥 ∈ 𝐴 ) → ( { suc 𝑛 } × ( 𝑛 𝐹 𝑥 ) ) ∈ 𝒫 ( ω × 𝐴 ) ) |
21 |
|
eldifn |
⊢ ( ( 𝑛 𝐹 𝑥 ) ∈ ( 𝒫 𝐴 ∖ { ∅ } ) → ¬ ( 𝑛 𝐹 𝑥 ) ∈ { ∅ } ) |
22 |
16
|
elsn |
⊢ ( ( 𝑛 𝐹 𝑥 ) ∈ { ∅ } ↔ ( 𝑛 𝐹 𝑥 ) = ∅ ) |
23 |
22
|
necon3bbii |
⊢ ( ¬ ( 𝑛 𝐹 𝑥 ) ∈ { ∅ } ↔ ( 𝑛 𝐹 𝑥 ) ≠ ∅ ) |
24 |
|
vex |
⊢ 𝑛 ∈ V |
25 |
24
|
sucex |
⊢ suc 𝑛 ∈ V |
26 |
25
|
snnz |
⊢ { suc 𝑛 } ≠ ∅ |
27 |
|
xpnz |
⊢ ( ( { suc 𝑛 } ≠ ∅ ∧ ( 𝑛 𝐹 𝑥 ) ≠ ∅ ) ↔ ( { suc 𝑛 } × ( 𝑛 𝐹 𝑥 ) ) ≠ ∅ ) |
28 |
27
|
biimpi |
⊢ ( ( { suc 𝑛 } ≠ ∅ ∧ ( 𝑛 𝐹 𝑥 ) ≠ ∅ ) → ( { suc 𝑛 } × ( 𝑛 𝐹 𝑥 ) ) ≠ ∅ ) |
29 |
26 28
|
mpan |
⊢ ( ( 𝑛 𝐹 𝑥 ) ≠ ∅ → ( { suc 𝑛 } × ( 𝑛 𝐹 𝑥 ) ) ≠ ∅ ) |
30 |
23 29
|
sylbi |
⊢ ( ¬ ( 𝑛 𝐹 𝑥 ) ∈ { ∅ } → ( { suc 𝑛 } × ( 𝑛 𝐹 𝑥 ) ) ≠ ∅ ) |
31 |
17
|
elsn |
⊢ ( ( { suc 𝑛 } × ( 𝑛 𝐹 𝑥 ) ) ∈ { ∅ } ↔ ( { suc 𝑛 } × ( 𝑛 𝐹 𝑥 ) ) = ∅ ) |
32 |
31
|
necon3bbii |
⊢ ( ¬ ( { suc 𝑛 } × ( 𝑛 𝐹 𝑥 ) ) ∈ { ∅ } ↔ ( { suc 𝑛 } × ( 𝑛 𝐹 𝑥 ) ) ≠ ∅ ) |
33 |
30 32
|
sylibr |
⊢ ( ¬ ( 𝑛 𝐹 𝑥 ) ∈ { ∅ } → ¬ ( { suc 𝑛 } × ( 𝑛 𝐹 𝑥 ) ) ∈ { ∅ } ) |
34 |
7 21 33
|
3syl |
⊢ ( ( 𝐹 : ( ω × 𝐴 ) ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) ∧ 𝑛 ∈ ω ∧ 𝑥 ∈ 𝐴 ) → ¬ ( { suc 𝑛 } × ( 𝑛 𝐹 𝑥 ) ) ∈ { ∅ } ) |
35 |
20 34
|
eldifd |
⊢ ( ( 𝐹 : ( ω × 𝐴 ) ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) ∧ 𝑛 ∈ ω ∧ 𝑥 ∈ 𝐴 ) → ( { suc 𝑛 } × ( 𝑛 𝐹 𝑥 ) ) ∈ ( 𝒫 ( ω × 𝐴 ) ∖ { ∅ } ) ) |
36 |
35
|
3expib |
⊢ ( 𝐹 : ( ω × 𝐴 ) ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) → ( ( 𝑛 ∈ ω ∧ 𝑥 ∈ 𝐴 ) → ( { suc 𝑛 } × ( 𝑛 𝐹 𝑥 ) ) ∈ ( 𝒫 ( ω × 𝐴 ) ∖ { ∅ } ) ) ) |
37 |
36
|
ralrimivv |
⊢ ( 𝐹 : ( ω × 𝐴 ) ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) → ∀ 𝑛 ∈ ω ∀ 𝑥 ∈ 𝐴 ( { suc 𝑛 } × ( 𝑛 𝐹 𝑥 ) ) ∈ ( 𝒫 ( ω × 𝐴 ) ∖ { ∅ } ) ) |
38 |
2
|
fmpo |
⊢ ( ∀ 𝑛 ∈ ω ∀ 𝑥 ∈ 𝐴 ( { suc 𝑛 } × ( 𝑛 𝐹 𝑥 ) ) ∈ ( 𝒫 ( ω × 𝐴 ) ∖ { ∅ } ) ↔ 𝐺 : ( ω × 𝐴 ) ⟶ ( 𝒫 ( ω × 𝐴 ) ∖ { ∅ } ) ) |
39 |
37 38
|
sylib |
⊢ ( 𝐹 : ( ω × 𝐴 ) ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) → 𝐺 : ( ω × 𝐴 ) ⟶ ( 𝒫 ( ω × 𝐴 ) ∖ { ∅ } ) ) |
40 |
|
dcomex |
⊢ ω ∈ V |
41 |
40 1
|
xpex |
⊢ ( ω × 𝐴 ) ∈ V |
42 |
41
|
axdc3 |
⊢ ( ( 〈 ∅ , 𝐶 〉 ∈ ( ω × 𝐴 ) ∧ 𝐺 : ( ω × 𝐴 ) ⟶ ( 𝒫 ( ω × 𝐴 ) ∖ { ∅ } ) ) → ∃ ℎ ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ ( ℎ ‘ ∅ ) = 〈 ∅ , 𝐶 〉 ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) ) |
43 |
5 39 42
|
syl2an |
⊢ ( ( 𝐶 ∈ 𝐴 ∧ 𝐹 : ( ω × 𝐴 ) ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) ) → ∃ ℎ ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ ( ℎ ‘ ∅ ) = 〈 ∅ , 𝐶 〉 ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) ) |
44 |
|
2ndcof |
⊢ ( ℎ : ω ⟶ ( ω × 𝐴 ) → ( 2nd ∘ ℎ ) : ω ⟶ 𝐴 ) |
45 |
44
|
3ad2ant1 |
⊢ ( ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ ( ℎ ‘ ∅ ) = 〈 ∅ , 𝐶 〉 ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) → ( 2nd ∘ ℎ ) : ω ⟶ 𝐴 ) |
46 |
45
|
adantl |
⊢ ( ( 𝐶 ∈ 𝐴 ∧ ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ ( ℎ ‘ ∅ ) = 〈 ∅ , 𝐶 〉 ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) ) → ( 2nd ∘ ℎ ) : ω ⟶ 𝐴 ) |
47 |
|
fex2 |
⊢ ( ( ( 2nd ∘ ℎ ) : ω ⟶ 𝐴 ∧ ω ∈ V ∧ 𝐴 ∈ V ) → ( 2nd ∘ ℎ ) ∈ V ) |
48 |
40 1 47
|
mp3an23 |
⊢ ( ( 2nd ∘ ℎ ) : ω ⟶ 𝐴 → ( 2nd ∘ ℎ ) ∈ V ) |
49 |
46 48
|
syl |
⊢ ( ( 𝐶 ∈ 𝐴 ∧ ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ ( ℎ ‘ ∅ ) = 〈 ∅ , 𝐶 〉 ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) ) → ( 2nd ∘ ℎ ) ∈ V ) |
50 |
|
fvco3 |
⊢ ( ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ ∅ ∈ ω ) → ( ( 2nd ∘ ℎ ) ‘ ∅ ) = ( 2nd ‘ ( ℎ ‘ ∅ ) ) ) |
51 |
3 50
|
mpan2 |
⊢ ( ℎ : ω ⟶ ( ω × 𝐴 ) → ( ( 2nd ∘ ℎ ) ‘ ∅ ) = ( 2nd ‘ ( ℎ ‘ ∅ ) ) ) |
52 |
51
|
3ad2ant1 |
⊢ ( ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ ( ℎ ‘ ∅ ) = 〈 ∅ , 𝐶 〉 ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) → ( ( 2nd ∘ ℎ ) ‘ ∅ ) = ( 2nd ‘ ( ℎ ‘ ∅ ) ) ) |
53 |
|
fveq2 |
⊢ ( ( ℎ ‘ ∅ ) = 〈 ∅ , 𝐶 〉 → ( 2nd ‘ ( ℎ ‘ ∅ ) ) = ( 2nd ‘ 〈 ∅ , 𝐶 〉 ) ) |
54 |
53
|
3ad2ant2 |
⊢ ( ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ ( ℎ ‘ ∅ ) = 〈 ∅ , 𝐶 〉 ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) → ( 2nd ‘ ( ℎ ‘ ∅ ) ) = ( 2nd ‘ 〈 ∅ , 𝐶 〉 ) ) |
55 |
52 54
|
eqtrd |
⊢ ( ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ ( ℎ ‘ ∅ ) = 〈 ∅ , 𝐶 〉 ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) → ( ( 2nd ∘ ℎ ) ‘ ∅ ) = ( 2nd ‘ 〈 ∅ , 𝐶 〉 ) ) |
56 |
|
op2ndg |
⊢ ( ( ∅ ∈ ω ∧ 𝐶 ∈ 𝐴 ) → ( 2nd ‘ 〈 ∅ , 𝐶 〉 ) = 𝐶 ) |
57 |
3 56
|
mpan |
⊢ ( 𝐶 ∈ 𝐴 → ( 2nd ‘ 〈 ∅ , 𝐶 〉 ) = 𝐶 ) |
58 |
55 57
|
sylan9eqr |
⊢ ( ( 𝐶 ∈ 𝐴 ∧ ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ ( ℎ ‘ ∅ ) = 〈 ∅ , 𝐶 〉 ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) ) → ( ( 2nd ∘ ℎ ) ‘ ∅ ) = 𝐶 ) |
59 |
|
nfv |
⊢ Ⅎ 𝑘 𝐶 ∈ 𝐴 |
60 |
|
nfv |
⊢ Ⅎ 𝑘 ℎ : ω ⟶ ( ω × 𝐴 ) |
61 |
|
nfv |
⊢ Ⅎ 𝑘 ( ℎ ‘ ∅ ) = 〈 ∅ , 𝐶 〉 |
62 |
|
nfra1 |
⊢ Ⅎ 𝑘 ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) |
63 |
60 61 62
|
nf3an |
⊢ Ⅎ 𝑘 ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ ( ℎ ‘ ∅ ) = 〈 ∅ , 𝐶 〉 ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) |
64 |
59 63
|
nfan |
⊢ Ⅎ 𝑘 ( 𝐶 ∈ 𝐴 ∧ ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ ( ℎ ‘ ∅ ) = 〈 ∅ , 𝐶 〉 ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) ) |
65 |
|
fveq2 |
⊢ ( 𝑚 = ∅ → ( ℎ ‘ 𝑚 ) = ( ℎ ‘ ∅ ) ) |
66 |
|
opeq1 |
⊢ ( 𝑚 = ∅ → 〈 𝑚 , 𝑧 〉 = 〈 ∅ , 𝑧 〉 ) |
67 |
65 66
|
eqeq12d |
⊢ ( 𝑚 = ∅ → ( ( ℎ ‘ 𝑚 ) = 〈 𝑚 , 𝑧 〉 ↔ ( ℎ ‘ ∅ ) = 〈 ∅ , 𝑧 〉 ) ) |
68 |
67
|
exbidv |
⊢ ( 𝑚 = ∅ → ( ∃ 𝑧 ( ℎ ‘ 𝑚 ) = 〈 𝑚 , 𝑧 〉 ↔ ∃ 𝑧 ( ℎ ‘ ∅ ) = 〈 ∅ , 𝑧 〉 ) ) |
69 |
|
fveq2 |
⊢ ( 𝑚 = 𝑖 → ( ℎ ‘ 𝑚 ) = ( ℎ ‘ 𝑖 ) ) |
70 |
|
opeq1 |
⊢ ( 𝑚 = 𝑖 → 〈 𝑚 , 𝑧 〉 = 〈 𝑖 , 𝑧 〉 ) |
71 |
69 70
|
eqeq12d |
⊢ ( 𝑚 = 𝑖 → ( ( ℎ ‘ 𝑚 ) = 〈 𝑚 , 𝑧 〉 ↔ ( ℎ ‘ 𝑖 ) = 〈 𝑖 , 𝑧 〉 ) ) |
72 |
71
|
exbidv |
⊢ ( 𝑚 = 𝑖 → ( ∃ 𝑧 ( ℎ ‘ 𝑚 ) = 〈 𝑚 , 𝑧 〉 ↔ ∃ 𝑧 ( ℎ ‘ 𝑖 ) = 〈 𝑖 , 𝑧 〉 ) ) |
73 |
|
fveq2 |
⊢ ( 𝑚 = suc 𝑖 → ( ℎ ‘ 𝑚 ) = ( ℎ ‘ suc 𝑖 ) ) |
74 |
|
opeq1 |
⊢ ( 𝑚 = suc 𝑖 → 〈 𝑚 , 𝑧 〉 = 〈 suc 𝑖 , 𝑧 〉 ) |
75 |
73 74
|
eqeq12d |
⊢ ( 𝑚 = suc 𝑖 → ( ( ℎ ‘ 𝑚 ) = 〈 𝑚 , 𝑧 〉 ↔ ( ℎ ‘ suc 𝑖 ) = 〈 suc 𝑖 , 𝑧 〉 ) ) |
76 |
75
|
exbidv |
⊢ ( 𝑚 = suc 𝑖 → ( ∃ 𝑧 ( ℎ ‘ 𝑚 ) = 〈 𝑚 , 𝑧 〉 ↔ ∃ 𝑧 ( ℎ ‘ suc 𝑖 ) = 〈 suc 𝑖 , 𝑧 〉 ) ) |
77 |
|
opeq2 |
⊢ ( 𝑧 = 𝐶 → 〈 ∅ , 𝑧 〉 = 〈 ∅ , 𝐶 〉 ) |
78 |
77
|
eqeq2d |
⊢ ( 𝑧 = 𝐶 → ( ( ℎ ‘ ∅ ) = 〈 ∅ , 𝑧 〉 ↔ ( ℎ ‘ ∅ ) = 〈 ∅ , 𝐶 〉 ) ) |
79 |
78
|
spcegv |
⊢ ( 𝐶 ∈ 𝐴 → ( ( ℎ ‘ ∅ ) = 〈 ∅ , 𝐶 〉 → ∃ 𝑧 ( ℎ ‘ ∅ ) = 〈 ∅ , 𝑧 〉 ) ) |
80 |
79
|
imp |
⊢ ( ( 𝐶 ∈ 𝐴 ∧ ( ℎ ‘ ∅ ) = 〈 ∅ , 𝐶 〉 ) → ∃ 𝑧 ( ℎ ‘ ∅ ) = 〈 ∅ , 𝑧 〉 ) |
81 |
80
|
3ad2antr2 |
⊢ ( ( 𝐶 ∈ 𝐴 ∧ ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ ( ℎ ‘ ∅ ) = 〈 ∅ , 𝐶 〉 ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) ) → ∃ 𝑧 ( ℎ ‘ ∅ ) = 〈 ∅ , 𝑧 〉 ) |
82 |
|
fveq2 |
⊢ ( ( ℎ ‘ 𝑖 ) = 〈 𝑖 , 𝑧 〉 → ( 𝐺 ‘ ( ℎ ‘ 𝑖 ) ) = ( 𝐺 ‘ 〈 𝑖 , 𝑧 〉 ) ) |
83 |
|
df-ov |
⊢ ( 𝑖 𝐺 𝑧 ) = ( 𝐺 ‘ 〈 𝑖 , 𝑧 〉 ) |
84 |
82 83
|
eqtr4di |
⊢ ( ( ℎ ‘ 𝑖 ) = 〈 𝑖 , 𝑧 〉 → ( 𝐺 ‘ ( ℎ ‘ 𝑖 ) ) = ( 𝑖 𝐺 𝑧 ) ) |
85 |
84
|
adantl |
⊢ ( ( ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ 𝑖 ∈ ω ) ∧ ( ℎ ‘ 𝑖 ) = 〈 𝑖 , 𝑧 〉 ) → ( 𝐺 ‘ ( ℎ ‘ 𝑖 ) ) = ( 𝑖 𝐺 𝑧 ) ) |
86 |
|
simplr |
⊢ ( ( ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ 𝑖 ∈ ω ) ∧ ( ℎ ‘ 𝑖 ) = 〈 𝑖 , 𝑧 〉 ) → 𝑖 ∈ ω ) |
87 |
|
ffvelrn |
⊢ ( ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ 𝑖 ∈ ω ) → ( ℎ ‘ 𝑖 ) ∈ ( ω × 𝐴 ) ) |
88 |
|
eleq1 |
⊢ ( ( ℎ ‘ 𝑖 ) = 〈 𝑖 , 𝑧 〉 → ( ( ℎ ‘ 𝑖 ) ∈ ( ω × 𝐴 ) ↔ 〈 𝑖 , 𝑧 〉 ∈ ( ω × 𝐴 ) ) ) |
89 |
|
opelxp2 |
⊢ ( 〈 𝑖 , 𝑧 〉 ∈ ( ω × 𝐴 ) → 𝑧 ∈ 𝐴 ) |
90 |
88 89
|
syl6bi |
⊢ ( ( ℎ ‘ 𝑖 ) = 〈 𝑖 , 𝑧 〉 → ( ( ℎ ‘ 𝑖 ) ∈ ( ω × 𝐴 ) → 𝑧 ∈ 𝐴 ) ) |
91 |
87 90
|
mpan9 |
⊢ ( ( ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ 𝑖 ∈ ω ) ∧ ( ℎ ‘ 𝑖 ) = 〈 𝑖 , 𝑧 〉 ) → 𝑧 ∈ 𝐴 ) |
92 |
|
suceq |
⊢ ( 𝑛 = 𝑖 → suc 𝑛 = suc 𝑖 ) |
93 |
92
|
sneqd |
⊢ ( 𝑛 = 𝑖 → { suc 𝑛 } = { suc 𝑖 } ) |
94 |
|
oveq1 |
⊢ ( 𝑛 = 𝑖 → ( 𝑛 𝐹 𝑥 ) = ( 𝑖 𝐹 𝑥 ) ) |
95 |
93 94
|
xpeq12d |
⊢ ( 𝑛 = 𝑖 → ( { suc 𝑛 } × ( 𝑛 𝐹 𝑥 ) ) = ( { suc 𝑖 } × ( 𝑖 𝐹 𝑥 ) ) ) |
96 |
|
oveq2 |
⊢ ( 𝑥 = 𝑧 → ( 𝑖 𝐹 𝑥 ) = ( 𝑖 𝐹 𝑧 ) ) |
97 |
96
|
xpeq2d |
⊢ ( 𝑥 = 𝑧 → ( { suc 𝑖 } × ( 𝑖 𝐹 𝑥 ) ) = ( { suc 𝑖 } × ( 𝑖 𝐹 𝑧 ) ) ) |
98 |
|
snex |
⊢ { suc 𝑖 } ∈ V |
99 |
|
ovex |
⊢ ( 𝑖 𝐹 𝑧 ) ∈ V |
100 |
98 99
|
xpex |
⊢ ( { suc 𝑖 } × ( 𝑖 𝐹 𝑧 ) ) ∈ V |
101 |
95 97 2 100
|
ovmpo |
⊢ ( ( 𝑖 ∈ ω ∧ 𝑧 ∈ 𝐴 ) → ( 𝑖 𝐺 𝑧 ) = ( { suc 𝑖 } × ( 𝑖 𝐹 𝑧 ) ) ) |
102 |
86 91 101
|
syl2anc |
⊢ ( ( ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ 𝑖 ∈ ω ) ∧ ( ℎ ‘ 𝑖 ) = 〈 𝑖 , 𝑧 〉 ) → ( 𝑖 𝐺 𝑧 ) = ( { suc 𝑖 } × ( 𝑖 𝐹 𝑧 ) ) ) |
103 |
85 102
|
eqtrd |
⊢ ( ( ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ 𝑖 ∈ ω ) ∧ ( ℎ ‘ 𝑖 ) = 〈 𝑖 , 𝑧 〉 ) → ( 𝐺 ‘ ( ℎ ‘ 𝑖 ) ) = ( { suc 𝑖 } × ( 𝑖 𝐹 𝑧 ) ) ) |
104 |
|
suceq |
⊢ ( 𝑘 = 𝑖 → suc 𝑘 = suc 𝑖 ) |
105 |
104
|
fveq2d |
⊢ ( 𝑘 = 𝑖 → ( ℎ ‘ suc 𝑘 ) = ( ℎ ‘ suc 𝑖 ) ) |
106 |
|
2fveq3 |
⊢ ( 𝑘 = 𝑖 → ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) = ( 𝐺 ‘ ( ℎ ‘ 𝑖 ) ) ) |
107 |
105 106
|
eleq12d |
⊢ ( 𝑘 = 𝑖 → ( ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ↔ ( ℎ ‘ suc 𝑖 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑖 ) ) ) ) |
108 |
107
|
rspcv |
⊢ ( 𝑖 ∈ ω → ( ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) → ( ℎ ‘ suc 𝑖 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑖 ) ) ) ) |
109 |
108
|
ad2antlr |
⊢ ( ( ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ 𝑖 ∈ ω ) ∧ ( ℎ ‘ 𝑖 ) = 〈 𝑖 , 𝑧 〉 ) → ( ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) → ( ℎ ‘ suc 𝑖 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑖 ) ) ) ) |
110 |
|
eleq2 |
⊢ ( ( 𝐺 ‘ ( ℎ ‘ 𝑖 ) ) = ( { suc 𝑖 } × ( 𝑖 𝐹 𝑧 ) ) → ( ( ℎ ‘ suc 𝑖 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑖 ) ) ↔ ( ℎ ‘ suc 𝑖 ) ∈ ( { suc 𝑖 } × ( 𝑖 𝐹 𝑧 ) ) ) ) |
111 |
|
elxp |
⊢ ( ( ℎ ‘ suc 𝑖 ) ∈ ( { suc 𝑖 } × ( 𝑖 𝐹 𝑧 ) ) ↔ ∃ 𝑠 ∃ 𝑡 ( ( ℎ ‘ suc 𝑖 ) = 〈 𝑠 , 𝑡 〉 ∧ ( 𝑠 ∈ { suc 𝑖 } ∧ 𝑡 ∈ ( 𝑖 𝐹 𝑧 ) ) ) ) |
112 |
|
velsn |
⊢ ( 𝑠 ∈ { suc 𝑖 } ↔ 𝑠 = suc 𝑖 ) |
113 |
|
opeq1 |
⊢ ( 𝑠 = suc 𝑖 → 〈 𝑠 , 𝑡 〉 = 〈 suc 𝑖 , 𝑡 〉 ) |
114 |
112 113
|
sylbi |
⊢ ( 𝑠 ∈ { suc 𝑖 } → 〈 𝑠 , 𝑡 〉 = 〈 suc 𝑖 , 𝑡 〉 ) |
115 |
114
|
eqeq2d |
⊢ ( 𝑠 ∈ { suc 𝑖 } → ( ( ℎ ‘ suc 𝑖 ) = 〈 𝑠 , 𝑡 〉 ↔ ( ℎ ‘ suc 𝑖 ) = 〈 suc 𝑖 , 𝑡 〉 ) ) |
116 |
115
|
biimpac |
⊢ ( ( ( ℎ ‘ suc 𝑖 ) = 〈 𝑠 , 𝑡 〉 ∧ 𝑠 ∈ { suc 𝑖 } ) → ( ℎ ‘ suc 𝑖 ) = 〈 suc 𝑖 , 𝑡 〉 ) |
117 |
116
|
adantrr |
⊢ ( ( ( ℎ ‘ suc 𝑖 ) = 〈 𝑠 , 𝑡 〉 ∧ ( 𝑠 ∈ { suc 𝑖 } ∧ 𝑡 ∈ ( 𝑖 𝐹 𝑧 ) ) ) → ( ℎ ‘ suc 𝑖 ) = 〈 suc 𝑖 , 𝑡 〉 ) |
118 |
117
|
eximi |
⊢ ( ∃ 𝑡 ( ( ℎ ‘ suc 𝑖 ) = 〈 𝑠 , 𝑡 〉 ∧ ( 𝑠 ∈ { suc 𝑖 } ∧ 𝑡 ∈ ( 𝑖 𝐹 𝑧 ) ) ) → ∃ 𝑡 ( ℎ ‘ suc 𝑖 ) = 〈 suc 𝑖 , 𝑡 〉 ) |
119 |
118
|
exlimiv |
⊢ ( ∃ 𝑠 ∃ 𝑡 ( ( ℎ ‘ suc 𝑖 ) = 〈 𝑠 , 𝑡 〉 ∧ ( 𝑠 ∈ { suc 𝑖 } ∧ 𝑡 ∈ ( 𝑖 𝐹 𝑧 ) ) ) → ∃ 𝑡 ( ℎ ‘ suc 𝑖 ) = 〈 suc 𝑖 , 𝑡 〉 ) |
120 |
111 119
|
sylbi |
⊢ ( ( ℎ ‘ suc 𝑖 ) ∈ ( { suc 𝑖 } × ( 𝑖 𝐹 𝑧 ) ) → ∃ 𝑡 ( ℎ ‘ suc 𝑖 ) = 〈 suc 𝑖 , 𝑡 〉 ) |
121 |
110 120
|
syl6bi |
⊢ ( ( 𝐺 ‘ ( ℎ ‘ 𝑖 ) ) = ( { suc 𝑖 } × ( 𝑖 𝐹 𝑧 ) ) → ( ( ℎ ‘ suc 𝑖 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑖 ) ) → ∃ 𝑡 ( ℎ ‘ suc 𝑖 ) = 〈 suc 𝑖 , 𝑡 〉 ) ) |
122 |
103 109 121
|
sylsyld |
⊢ ( ( ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ 𝑖 ∈ ω ) ∧ ( ℎ ‘ 𝑖 ) = 〈 𝑖 , 𝑧 〉 ) → ( ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) → ∃ 𝑡 ( ℎ ‘ suc 𝑖 ) = 〈 suc 𝑖 , 𝑡 〉 ) ) |
123 |
122
|
expcom |
⊢ ( ( ℎ ‘ 𝑖 ) = 〈 𝑖 , 𝑧 〉 → ( ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ 𝑖 ∈ ω ) → ( ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) → ∃ 𝑡 ( ℎ ‘ suc 𝑖 ) = 〈 suc 𝑖 , 𝑡 〉 ) ) ) |
124 |
123
|
exlimiv |
⊢ ( ∃ 𝑧 ( ℎ ‘ 𝑖 ) = 〈 𝑖 , 𝑧 〉 → ( ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ 𝑖 ∈ ω ) → ( ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) → ∃ 𝑡 ( ℎ ‘ suc 𝑖 ) = 〈 suc 𝑖 , 𝑡 〉 ) ) ) |
125 |
124
|
com3l |
⊢ ( ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ 𝑖 ∈ ω ) → ( ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) → ( ∃ 𝑧 ( ℎ ‘ 𝑖 ) = 〈 𝑖 , 𝑧 〉 → ∃ 𝑡 ( ℎ ‘ suc 𝑖 ) = 〈 suc 𝑖 , 𝑡 〉 ) ) ) |
126 |
|
opeq2 |
⊢ ( 𝑡 = 𝑧 → 〈 suc 𝑖 , 𝑡 〉 = 〈 suc 𝑖 , 𝑧 〉 ) |
127 |
126
|
eqeq2d |
⊢ ( 𝑡 = 𝑧 → ( ( ℎ ‘ suc 𝑖 ) = 〈 suc 𝑖 , 𝑡 〉 ↔ ( ℎ ‘ suc 𝑖 ) = 〈 suc 𝑖 , 𝑧 〉 ) ) |
128 |
127
|
cbvexvw |
⊢ ( ∃ 𝑡 ( ℎ ‘ suc 𝑖 ) = 〈 suc 𝑖 , 𝑡 〉 ↔ ∃ 𝑧 ( ℎ ‘ suc 𝑖 ) = 〈 suc 𝑖 , 𝑧 〉 ) |
129 |
125 128
|
syl8ib |
⊢ ( ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ 𝑖 ∈ ω ) → ( ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) → ( ∃ 𝑧 ( ℎ ‘ 𝑖 ) = 〈 𝑖 , 𝑧 〉 → ∃ 𝑧 ( ℎ ‘ suc 𝑖 ) = 〈 suc 𝑖 , 𝑧 〉 ) ) ) |
130 |
129
|
impancom |
⊢ ( ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) → ( 𝑖 ∈ ω → ( ∃ 𝑧 ( ℎ ‘ 𝑖 ) = 〈 𝑖 , 𝑧 〉 → ∃ 𝑧 ( ℎ ‘ suc 𝑖 ) = 〈 suc 𝑖 , 𝑧 〉 ) ) ) |
131 |
130
|
3adant2 |
⊢ ( ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ ( ℎ ‘ ∅ ) = 〈 ∅ , 𝐶 〉 ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) → ( 𝑖 ∈ ω → ( ∃ 𝑧 ( ℎ ‘ 𝑖 ) = 〈 𝑖 , 𝑧 〉 → ∃ 𝑧 ( ℎ ‘ suc 𝑖 ) = 〈 suc 𝑖 , 𝑧 〉 ) ) ) |
132 |
131
|
adantl |
⊢ ( ( 𝐶 ∈ 𝐴 ∧ ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ ( ℎ ‘ ∅ ) = 〈 ∅ , 𝐶 〉 ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) ) → ( 𝑖 ∈ ω → ( ∃ 𝑧 ( ℎ ‘ 𝑖 ) = 〈 𝑖 , 𝑧 〉 → ∃ 𝑧 ( ℎ ‘ suc 𝑖 ) = 〈 suc 𝑖 , 𝑧 〉 ) ) ) |
133 |
132
|
com12 |
⊢ ( 𝑖 ∈ ω → ( ( 𝐶 ∈ 𝐴 ∧ ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ ( ℎ ‘ ∅ ) = 〈 ∅ , 𝐶 〉 ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) ) → ( ∃ 𝑧 ( ℎ ‘ 𝑖 ) = 〈 𝑖 , 𝑧 〉 → ∃ 𝑧 ( ℎ ‘ suc 𝑖 ) = 〈 suc 𝑖 , 𝑧 〉 ) ) ) |
134 |
68 72 76 81 133
|
finds2 |
⊢ ( 𝑚 ∈ ω → ( ( 𝐶 ∈ 𝐴 ∧ ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ ( ℎ ‘ ∅ ) = 〈 ∅ , 𝐶 〉 ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) ) → ∃ 𝑧 ( ℎ ‘ 𝑚 ) = 〈 𝑚 , 𝑧 〉 ) ) |
135 |
134
|
com12 |
⊢ ( ( 𝐶 ∈ 𝐴 ∧ ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ ( ℎ ‘ ∅ ) = 〈 ∅ , 𝐶 〉 ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) ) → ( 𝑚 ∈ ω → ∃ 𝑧 ( ℎ ‘ 𝑚 ) = 〈 𝑚 , 𝑧 〉 ) ) |
136 |
135
|
ralrimiv |
⊢ ( ( 𝐶 ∈ 𝐴 ∧ ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ ( ℎ ‘ ∅ ) = 〈 ∅ , 𝐶 〉 ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) ) → ∀ 𝑚 ∈ ω ∃ 𝑧 ( ℎ ‘ 𝑚 ) = 〈 𝑚 , 𝑧 〉 ) |
137 |
|
fveq2 |
⊢ ( 𝑚 = 𝑘 → ( ℎ ‘ 𝑚 ) = ( ℎ ‘ 𝑘 ) ) |
138 |
|
opeq1 |
⊢ ( 𝑚 = 𝑘 → 〈 𝑚 , 𝑧 〉 = 〈 𝑘 , 𝑧 〉 ) |
139 |
137 138
|
eqeq12d |
⊢ ( 𝑚 = 𝑘 → ( ( ℎ ‘ 𝑚 ) = 〈 𝑚 , 𝑧 〉 ↔ ( ℎ ‘ 𝑘 ) = 〈 𝑘 , 𝑧 〉 ) ) |
140 |
139
|
exbidv |
⊢ ( 𝑚 = 𝑘 → ( ∃ 𝑧 ( ℎ ‘ 𝑚 ) = 〈 𝑚 , 𝑧 〉 ↔ ∃ 𝑧 ( ℎ ‘ 𝑘 ) = 〈 𝑘 , 𝑧 〉 ) ) |
141 |
140
|
rspccv |
⊢ ( ∀ 𝑚 ∈ ω ∃ 𝑧 ( ℎ ‘ 𝑚 ) = 〈 𝑚 , 𝑧 〉 → ( 𝑘 ∈ ω → ∃ 𝑧 ( ℎ ‘ 𝑘 ) = 〈 𝑘 , 𝑧 〉 ) ) |
142 |
136 141
|
syl |
⊢ ( ( 𝐶 ∈ 𝐴 ∧ ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ ( ℎ ‘ ∅ ) = 〈 ∅ , 𝐶 〉 ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) ) → ( 𝑘 ∈ ω → ∃ 𝑧 ( ℎ ‘ 𝑘 ) = 〈 𝑘 , 𝑧 〉 ) ) |
143 |
142
|
3impia |
⊢ ( ( 𝐶 ∈ 𝐴 ∧ ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ ( ℎ ‘ ∅ ) = 〈 ∅ , 𝐶 〉 ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) ∧ 𝑘 ∈ ω ) → ∃ 𝑧 ( ℎ ‘ 𝑘 ) = 〈 𝑘 , 𝑧 〉 ) |
144 |
|
simp21 |
⊢ ( ( 𝐶 ∈ 𝐴 ∧ ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ ( ℎ ‘ ∅ ) = 〈 ∅ , 𝐶 〉 ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) ∧ 𝑘 ∈ ω ) → ℎ : ω ⟶ ( ω × 𝐴 ) ) |
145 |
|
simp3 |
⊢ ( ( 𝐶 ∈ 𝐴 ∧ ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ ( ℎ ‘ ∅ ) = 〈 ∅ , 𝐶 〉 ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) ∧ 𝑘 ∈ ω ) → 𝑘 ∈ ω ) |
146 |
|
rspa |
⊢ ( ( ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ∧ 𝑘 ∈ ω ) → ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) |
147 |
146
|
3ad2antl3 |
⊢ ( ( ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ ( ℎ ‘ ∅ ) = 〈 ∅ , 𝐶 〉 ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) ∧ 𝑘 ∈ ω ) → ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) |
148 |
147
|
3adant1 |
⊢ ( ( 𝐶 ∈ 𝐴 ∧ ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ ( ℎ ‘ ∅ ) = 〈 ∅ , 𝐶 〉 ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) ∧ 𝑘 ∈ ω ) → ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) |
149 |
|
simpl |
⊢ ( ( ( ℎ ‘ 𝑘 ) = 〈 𝑘 , 𝑧 〉 ∧ ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ 𝑘 ∈ ω ) ) → ( ℎ ‘ 𝑘 ) = 〈 𝑘 , 𝑧 〉 ) |
150 |
149
|
fveq2d |
⊢ ( ( ( ℎ ‘ 𝑘 ) = 〈 𝑘 , 𝑧 〉 ∧ ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ 𝑘 ∈ ω ) ) → ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) = ( 𝐺 ‘ 〈 𝑘 , 𝑧 〉 ) ) |
151 |
|
simprr |
⊢ ( ( ( ℎ ‘ 𝑘 ) = 〈 𝑘 , 𝑧 〉 ∧ ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ 𝑘 ∈ ω ) ) → 𝑘 ∈ ω ) |
152 |
|
eleq1 |
⊢ ( ( ℎ ‘ 𝑘 ) = 〈 𝑘 , 𝑧 〉 → ( ( ℎ ‘ 𝑘 ) ∈ ( ω × 𝐴 ) ↔ 〈 𝑘 , 𝑧 〉 ∈ ( ω × 𝐴 ) ) ) |
153 |
|
opelxp2 |
⊢ ( 〈 𝑘 , 𝑧 〉 ∈ ( ω × 𝐴 ) → 𝑧 ∈ 𝐴 ) |
154 |
152 153
|
syl6bi |
⊢ ( ( ℎ ‘ 𝑘 ) = 〈 𝑘 , 𝑧 〉 → ( ( ℎ ‘ 𝑘 ) ∈ ( ω × 𝐴 ) → 𝑧 ∈ 𝐴 ) ) |
155 |
|
ffvelrn |
⊢ ( ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ 𝑘 ∈ ω ) → ( ℎ ‘ 𝑘 ) ∈ ( ω × 𝐴 ) ) |
156 |
154 155
|
impel |
⊢ ( ( ( ℎ ‘ 𝑘 ) = 〈 𝑘 , 𝑧 〉 ∧ ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ 𝑘 ∈ ω ) ) → 𝑧 ∈ 𝐴 ) |
157 |
|
df-ov |
⊢ ( 𝑘 𝐺 𝑧 ) = ( 𝐺 ‘ 〈 𝑘 , 𝑧 〉 ) |
158 |
|
suceq |
⊢ ( 𝑛 = 𝑘 → suc 𝑛 = suc 𝑘 ) |
159 |
158
|
sneqd |
⊢ ( 𝑛 = 𝑘 → { suc 𝑛 } = { suc 𝑘 } ) |
160 |
|
oveq1 |
⊢ ( 𝑛 = 𝑘 → ( 𝑛 𝐹 𝑥 ) = ( 𝑘 𝐹 𝑥 ) ) |
161 |
159 160
|
xpeq12d |
⊢ ( 𝑛 = 𝑘 → ( { suc 𝑛 } × ( 𝑛 𝐹 𝑥 ) ) = ( { suc 𝑘 } × ( 𝑘 𝐹 𝑥 ) ) ) |
162 |
|
oveq2 |
⊢ ( 𝑥 = 𝑧 → ( 𝑘 𝐹 𝑥 ) = ( 𝑘 𝐹 𝑧 ) ) |
163 |
162
|
xpeq2d |
⊢ ( 𝑥 = 𝑧 → ( { suc 𝑘 } × ( 𝑘 𝐹 𝑥 ) ) = ( { suc 𝑘 } × ( 𝑘 𝐹 𝑧 ) ) ) |
164 |
|
snex |
⊢ { suc 𝑘 } ∈ V |
165 |
|
ovex |
⊢ ( 𝑘 𝐹 𝑧 ) ∈ V |
166 |
164 165
|
xpex |
⊢ ( { suc 𝑘 } × ( 𝑘 𝐹 𝑧 ) ) ∈ V |
167 |
161 163 2 166
|
ovmpo |
⊢ ( ( 𝑘 ∈ ω ∧ 𝑧 ∈ 𝐴 ) → ( 𝑘 𝐺 𝑧 ) = ( { suc 𝑘 } × ( 𝑘 𝐹 𝑧 ) ) ) |
168 |
157 167
|
eqtr3id |
⊢ ( ( 𝑘 ∈ ω ∧ 𝑧 ∈ 𝐴 ) → ( 𝐺 ‘ 〈 𝑘 , 𝑧 〉 ) = ( { suc 𝑘 } × ( 𝑘 𝐹 𝑧 ) ) ) |
169 |
151 156 168
|
syl2anc |
⊢ ( ( ( ℎ ‘ 𝑘 ) = 〈 𝑘 , 𝑧 〉 ∧ ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ 𝑘 ∈ ω ) ) → ( 𝐺 ‘ 〈 𝑘 , 𝑧 〉 ) = ( { suc 𝑘 } × ( 𝑘 𝐹 𝑧 ) ) ) |
170 |
150 169
|
eqtrd |
⊢ ( ( ( ℎ ‘ 𝑘 ) = 〈 𝑘 , 𝑧 〉 ∧ ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ 𝑘 ∈ ω ) ) → ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) = ( { suc 𝑘 } × ( 𝑘 𝐹 𝑧 ) ) ) |
171 |
170
|
eleq2d |
⊢ ( ( ( ℎ ‘ 𝑘 ) = 〈 𝑘 , 𝑧 〉 ∧ ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ 𝑘 ∈ ω ) ) → ( ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ↔ ( ℎ ‘ suc 𝑘 ) ∈ ( { suc 𝑘 } × ( 𝑘 𝐹 𝑧 ) ) ) ) |
172 |
|
elxp |
⊢ ( ( ℎ ‘ suc 𝑘 ) ∈ ( { suc 𝑘 } × ( 𝑘 𝐹 𝑧 ) ) ↔ ∃ 𝑠 ∃ 𝑡 ( ( ℎ ‘ suc 𝑘 ) = 〈 𝑠 , 𝑡 〉 ∧ ( 𝑠 ∈ { suc 𝑘 } ∧ 𝑡 ∈ ( 𝑘 𝐹 𝑧 ) ) ) ) |
173 |
|
peano2 |
⊢ ( 𝑘 ∈ ω → suc 𝑘 ∈ ω ) |
174 |
|
fvco3 |
⊢ ( ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ suc 𝑘 ∈ ω ) → ( ( 2nd ∘ ℎ ) ‘ suc 𝑘 ) = ( 2nd ‘ ( ℎ ‘ suc 𝑘 ) ) ) |
175 |
173 174
|
sylan2 |
⊢ ( ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ 𝑘 ∈ ω ) → ( ( 2nd ∘ ℎ ) ‘ suc 𝑘 ) = ( 2nd ‘ ( ℎ ‘ suc 𝑘 ) ) ) |
176 |
175
|
adantl |
⊢ ( ( ( ( ℎ ‘ suc 𝑘 ) = 〈 𝑠 , 𝑡 〉 ∧ ( ℎ ‘ 𝑘 ) = 〈 𝑘 , 𝑧 〉 ) ∧ ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ 𝑘 ∈ ω ) ) → ( ( 2nd ∘ ℎ ) ‘ suc 𝑘 ) = ( 2nd ‘ ( ℎ ‘ suc 𝑘 ) ) ) |
177 |
|
simpll |
⊢ ( ( ( ( ℎ ‘ suc 𝑘 ) = 〈 𝑠 , 𝑡 〉 ∧ ( ℎ ‘ 𝑘 ) = 〈 𝑘 , 𝑧 〉 ) ∧ ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ 𝑘 ∈ ω ) ) → ( ℎ ‘ suc 𝑘 ) = 〈 𝑠 , 𝑡 〉 ) |
178 |
177
|
fveq2d |
⊢ ( ( ( ( ℎ ‘ suc 𝑘 ) = 〈 𝑠 , 𝑡 〉 ∧ ( ℎ ‘ 𝑘 ) = 〈 𝑘 , 𝑧 〉 ) ∧ ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ 𝑘 ∈ ω ) ) → ( 2nd ‘ ( ℎ ‘ suc 𝑘 ) ) = ( 2nd ‘ 〈 𝑠 , 𝑡 〉 ) ) |
179 |
176 178
|
eqtrd |
⊢ ( ( ( ( ℎ ‘ suc 𝑘 ) = 〈 𝑠 , 𝑡 〉 ∧ ( ℎ ‘ 𝑘 ) = 〈 𝑘 , 𝑧 〉 ) ∧ ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ 𝑘 ∈ ω ) ) → ( ( 2nd ∘ ℎ ) ‘ suc 𝑘 ) = ( 2nd ‘ 〈 𝑠 , 𝑡 〉 ) ) |
180 |
|
vex |
⊢ 𝑠 ∈ V |
181 |
|
vex |
⊢ 𝑡 ∈ V |
182 |
180 181
|
op2nd |
⊢ ( 2nd ‘ 〈 𝑠 , 𝑡 〉 ) = 𝑡 |
183 |
179 182
|
eqtrdi |
⊢ ( ( ( ( ℎ ‘ suc 𝑘 ) = 〈 𝑠 , 𝑡 〉 ∧ ( ℎ ‘ 𝑘 ) = 〈 𝑘 , 𝑧 〉 ) ∧ ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ 𝑘 ∈ ω ) ) → ( ( 2nd ∘ ℎ ) ‘ suc 𝑘 ) = 𝑡 ) |
184 |
|
fvco3 |
⊢ ( ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ 𝑘 ∈ ω ) → ( ( 2nd ∘ ℎ ) ‘ 𝑘 ) = ( 2nd ‘ ( ℎ ‘ 𝑘 ) ) ) |
185 |
184
|
adantl |
⊢ ( ( ( ( ℎ ‘ suc 𝑘 ) = 〈 𝑠 , 𝑡 〉 ∧ ( ℎ ‘ 𝑘 ) = 〈 𝑘 , 𝑧 〉 ) ∧ ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ 𝑘 ∈ ω ) ) → ( ( 2nd ∘ ℎ ) ‘ 𝑘 ) = ( 2nd ‘ ( ℎ ‘ 𝑘 ) ) ) |
186 |
|
simplr |
⊢ ( ( ( ( ℎ ‘ suc 𝑘 ) = 〈 𝑠 , 𝑡 〉 ∧ ( ℎ ‘ 𝑘 ) = 〈 𝑘 , 𝑧 〉 ) ∧ ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ 𝑘 ∈ ω ) ) → ( ℎ ‘ 𝑘 ) = 〈 𝑘 , 𝑧 〉 ) |
187 |
186
|
fveq2d |
⊢ ( ( ( ( ℎ ‘ suc 𝑘 ) = 〈 𝑠 , 𝑡 〉 ∧ ( ℎ ‘ 𝑘 ) = 〈 𝑘 , 𝑧 〉 ) ∧ ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ 𝑘 ∈ ω ) ) → ( 2nd ‘ ( ℎ ‘ 𝑘 ) ) = ( 2nd ‘ 〈 𝑘 , 𝑧 〉 ) ) |
188 |
185 187
|
eqtrd |
⊢ ( ( ( ( ℎ ‘ suc 𝑘 ) = 〈 𝑠 , 𝑡 〉 ∧ ( ℎ ‘ 𝑘 ) = 〈 𝑘 , 𝑧 〉 ) ∧ ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ 𝑘 ∈ ω ) ) → ( ( 2nd ∘ ℎ ) ‘ 𝑘 ) = ( 2nd ‘ 〈 𝑘 , 𝑧 〉 ) ) |
189 |
|
vex |
⊢ 𝑘 ∈ V |
190 |
|
vex |
⊢ 𝑧 ∈ V |
191 |
189 190
|
op2nd |
⊢ ( 2nd ‘ 〈 𝑘 , 𝑧 〉 ) = 𝑧 |
192 |
188 191
|
eqtrdi |
⊢ ( ( ( ( ℎ ‘ suc 𝑘 ) = 〈 𝑠 , 𝑡 〉 ∧ ( ℎ ‘ 𝑘 ) = 〈 𝑘 , 𝑧 〉 ) ∧ ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ 𝑘 ∈ ω ) ) → ( ( 2nd ∘ ℎ ) ‘ 𝑘 ) = 𝑧 ) |
193 |
192
|
oveq2d |
⊢ ( ( ( ( ℎ ‘ suc 𝑘 ) = 〈 𝑠 , 𝑡 〉 ∧ ( ℎ ‘ 𝑘 ) = 〈 𝑘 , 𝑧 〉 ) ∧ ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ 𝑘 ∈ ω ) ) → ( 𝑘 𝐹 ( ( 2nd ∘ ℎ ) ‘ 𝑘 ) ) = ( 𝑘 𝐹 𝑧 ) ) |
194 |
183 193
|
eleq12d |
⊢ ( ( ( ( ℎ ‘ suc 𝑘 ) = 〈 𝑠 , 𝑡 〉 ∧ ( ℎ ‘ 𝑘 ) = 〈 𝑘 , 𝑧 〉 ) ∧ ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ 𝑘 ∈ ω ) ) → ( ( ( 2nd ∘ ℎ ) ‘ suc 𝑘 ) ∈ ( 𝑘 𝐹 ( ( 2nd ∘ ℎ ) ‘ 𝑘 ) ) ↔ 𝑡 ∈ ( 𝑘 𝐹 𝑧 ) ) ) |
195 |
194
|
biimprcd |
⊢ ( 𝑡 ∈ ( 𝑘 𝐹 𝑧 ) → ( ( ( ( ℎ ‘ suc 𝑘 ) = 〈 𝑠 , 𝑡 〉 ∧ ( ℎ ‘ 𝑘 ) = 〈 𝑘 , 𝑧 〉 ) ∧ ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ 𝑘 ∈ ω ) ) → ( ( 2nd ∘ ℎ ) ‘ suc 𝑘 ) ∈ ( 𝑘 𝐹 ( ( 2nd ∘ ℎ ) ‘ 𝑘 ) ) ) ) |
196 |
195
|
exp4c |
⊢ ( 𝑡 ∈ ( 𝑘 𝐹 𝑧 ) → ( ( ℎ ‘ suc 𝑘 ) = 〈 𝑠 , 𝑡 〉 → ( ( ℎ ‘ 𝑘 ) = 〈 𝑘 , 𝑧 〉 → ( ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ 𝑘 ∈ ω ) → ( ( 2nd ∘ ℎ ) ‘ suc 𝑘 ) ∈ ( 𝑘 𝐹 ( ( 2nd ∘ ℎ ) ‘ 𝑘 ) ) ) ) ) ) |
197 |
196
|
adantl |
⊢ ( ( 𝑠 ∈ { suc 𝑘 } ∧ 𝑡 ∈ ( 𝑘 𝐹 𝑧 ) ) → ( ( ℎ ‘ suc 𝑘 ) = 〈 𝑠 , 𝑡 〉 → ( ( ℎ ‘ 𝑘 ) = 〈 𝑘 , 𝑧 〉 → ( ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ 𝑘 ∈ ω ) → ( ( 2nd ∘ ℎ ) ‘ suc 𝑘 ) ∈ ( 𝑘 𝐹 ( ( 2nd ∘ ℎ ) ‘ 𝑘 ) ) ) ) ) ) |
198 |
197
|
impcom |
⊢ ( ( ( ℎ ‘ suc 𝑘 ) = 〈 𝑠 , 𝑡 〉 ∧ ( 𝑠 ∈ { suc 𝑘 } ∧ 𝑡 ∈ ( 𝑘 𝐹 𝑧 ) ) ) → ( ( ℎ ‘ 𝑘 ) = 〈 𝑘 , 𝑧 〉 → ( ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ 𝑘 ∈ ω ) → ( ( 2nd ∘ ℎ ) ‘ suc 𝑘 ) ∈ ( 𝑘 𝐹 ( ( 2nd ∘ ℎ ) ‘ 𝑘 ) ) ) ) ) |
199 |
198
|
exlimivv |
⊢ ( ∃ 𝑠 ∃ 𝑡 ( ( ℎ ‘ suc 𝑘 ) = 〈 𝑠 , 𝑡 〉 ∧ ( 𝑠 ∈ { suc 𝑘 } ∧ 𝑡 ∈ ( 𝑘 𝐹 𝑧 ) ) ) → ( ( ℎ ‘ 𝑘 ) = 〈 𝑘 , 𝑧 〉 → ( ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ 𝑘 ∈ ω ) → ( ( 2nd ∘ ℎ ) ‘ suc 𝑘 ) ∈ ( 𝑘 𝐹 ( ( 2nd ∘ ℎ ) ‘ 𝑘 ) ) ) ) ) |
200 |
172 199
|
sylbi |
⊢ ( ( ℎ ‘ suc 𝑘 ) ∈ ( { suc 𝑘 } × ( 𝑘 𝐹 𝑧 ) ) → ( ( ℎ ‘ 𝑘 ) = 〈 𝑘 , 𝑧 〉 → ( ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ 𝑘 ∈ ω ) → ( ( 2nd ∘ ℎ ) ‘ suc 𝑘 ) ∈ ( 𝑘 𝐹 ( ( 2nd ∘ ℎ ) ‘ 𝑘 ) ) ) ) ) |
201 |
200
|
com3l |
⊢ ( ( ℎ ‘ 𝑘 ) = 〈 𝑘 , 𝑧 〉 → ( ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ 𝑘 ∈ ω ) → ( ( ℎ ‘ suc 𝑘 ) ∈ ( { suc 𝑘 } × ( 𝑘 𝐹 𝑧 ) ) → ( ( 2nd ∘ ℎ ) ‘ suc 𝑘 ) ∈ ( 𝑘 𝐹 ( ( 2nd ∘ ℎ ) ‘ 𝑘 ) ) ) ) ) |
202 |
201
|
imp |
⊢ ( ( ( ℎ ‘ 𝑘 ) = 〈 𝑘 , 𝑧 〉 ∧ ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ 𝑘 ∈ ω ) ) → ( ( ℎ ‘ suc 𝑘 ) ∈ ( { suc 𝑘 } × ( 𝑘 𝐹 𝑧 ) ) → ( ( 2nd ∘ ℎ ) ‘ suc 𝑘 ) ∈ ( 𝑘 𝐹 ( ( 2nd ∘ ℎ ) ‘ 𝑘 ) ) ) ) |
203 |
171 202
|
sylbid |
⊢ ( ( ( ℎ ‘ 𝑘 ) = 〈 𝑘 , 𝑧 〉 ∧ ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ 𝑘 ∈ ω ) ) → ( ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) → ( ( 2nd ∘ ℎ ) ‘ suc 𝑘 ) ∈ ( 𝑘 𝐹 ( ( 2nd ∘ ℎ ) ‘ 𝑘 ) ) ) ) |
204 |
203
|
ex |
⊢ ( ( ℎ ‘ 𝑘 ) = 〈 𝑘 , 𝑧 〉 → ( ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ 𝑘 ∈ ω ) → ( ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) → ( ( 2nd ∘ ℎ ) ‘ suc 𝑘 ) ∈ ( 𝑘 𝐹 ( ( 2nd ∘ ℎ ) ‘ 𝑘 ) ) ) ) ) |
205 |
204
|
exlimiv |
⊢ ( ∃ 𝑧 ( ℎ ‘ 𝑘 ) = 〈 𝑘 , 𝑧 〉 → ( ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ 𝑘 ∈ ω ) → ( ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) → ( ( 2nd ∘ ℎ ) ‘ suc 𝑘 ) ∈ ( 𝑘 𝐹 ( ( 2nd ∘ ℎ ) ‘ 𝑘 ) ) ) ) ) |
206 |
205
|
3imp |
⊢ ( ( ∃ 𝑧 ( ℎ ‘ 𝑘 ) = 〈 𝑘 , 𝑧 〉 ∧ ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ 𝑘 ∈ ω ) ∧ ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) → ( ( 2nd ∘ ℎ ) ‘ suc 𝑘 ) ∈ ( 𝑘 𝐹 ( ( 2nd ∘ ℎ ) ‘ 𝑘 ) ) ) |
207 |
143 144 145 148 206
|
syl121anc |
⊢ ( ( 𝐶 ∈ 𝐴 ∧ ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ ( ℎ ‘ ∅ ) = 〈 ∅ , 𝐶 〉 ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) ∧ 𝑘 ∈ ω ) → ( ( 2nd ∘ ℎ ) ‘ suc 𝑘 ) ∈ ( 𝑘 𝐹 ( ( 2nd ∘ ℎ ) ‘ 𝑘 ) ) ) |
208 |
207
|
3expia |
⊢ ( ( 𝐶 ∈ 𝐴 ∧ ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ ( ℎ ‘ ∅ ) = 〈 ∅ , 𝐶 〉 ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) ) → ( 𝑘 ∈ ω → ( ( 2nd ∘ ℎ ) ‘ suc 𝑘 ) ∈ ( 𝑘 𝐹 ( ( 2nd ∘ ℎ ) ‘ 𝑘 ) ) ) ) |
209 |
64 208
|
ralrimi |
⊢ ( ( 𝐶 ∈ 𝐴 ∧ ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ ( ℎ ‘ ∅ ) = 〈 ∅ , 𝐶 〉 ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) ) → ∀ 𝑘 ∈ ω ( ( 2nd ∘ ℎ ) ‘ suc 𝑘 ) ∈ ( 𝑘 𝐹 ( ( 2nd ∘ ℎ ) ‘ 𝑘 ) ) ) |
210 |
46 58 209
|
3jca |
⊢ ( ( 𝐶 ∈ 𝐴 ∧ ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ ( ℎ ‘ ∅ ) = 〈 ∅ , 𝐶 〉 ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) ) → ( ( 2nd ∘ ℎ ) : ω ⟶ 𝐴 ∧ ( ( 2nd ∘ ℎ ) ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘 ∈ ω ( ( 2nd ∘ ℎ ) ‘ suc 𝑘 ) ∈ ( 𝑘 𝐹 ( ( 2nd ∘ ℎ ) ‘ 𝑘 ) ) ) ) |
211 |
|
feq1 |
⊢ ( 𝑔 = ( 2nd ∘ ℎ ) → ( 𝑔 : ω ⟶ 𝐴 ↔ ( 2nd ∘ ℎ ) : ω ⟶ 𝐴 ) ) |
212 |
|
fveq1 |
⊢ ( 𝑔 = ( 2nd ∘ ℎ ) → ( 𝑔 ‘ ∅ ) = ( ( 2nd ∘ ℎ ) ‘ ∅ ) ) |
213 |
212
|
eqeq1d |
⊢ ( 𝑔 = ( 2nd ∘ ℎ ) → ( ( 𝑔 ‘ ∅ ) = 𝐶 ↔ ( ( 2nd ∘ ℎ ) ‘ ∅ ) = 𝐶 ) ) |
214 |
|
fveq1 |
⊢ ( 𝑔 = ( 2nd ∘ ℎ ) → ( 𝑔 ‘ suc 𝑘 ) = ( ( 2nd ∘ ℎ ) ‘ suc 𝑘 ) ) |
215 |
|
fveq1 |
⊢ ( 𝑔 = ( 2nd ∘ ℎ ) → ( 𝑔 ‘ 𝑘 ) = ( ( 2nd ∘ ℎ ) ‘ 𝑘 ) ) |
216 |
215
|
oveq2d |
⊢ ( 𝑔 = ( 2nd ∘ ℎ ) → ( 𝑘 𝐹 ( 𝑔 ‘ 𝑘 ) ) = ( 𝑘 𝐹 ( ( 2nd ∘ ℎ ) ‘ 𝑘 ) ) ) |
217 |
214 216
|
eleq12d |
⊢ ( 𝑔 = ( 2nd ∘ ℎ ) → ( ( 𝑔 ‘ suc 𝑘 ) ∈ ( 𝑘 𝐹 ( 𝑔 ‘ 𝑘 ) ) ↔ ( ( 2nd ∘ ℎ ) ‘ suc 𝑘 ) ∈ ( 𝑘 𝐹 ( ( 2nd ∘ ℎ ) ‘ 𝑘 ) ) ) ) |
218 |
217
|
ralbidv |
⊢ ( 𝑔 = ( 2nd ∘ ℎ ) → ( ∀ 𝑘 ∈ ω ( 𝑔 ‘ suc 𝑘 ) ∈ ( 𝑘 𝐹 ( 𝑔 ‘ 𝑘 ) ) ↔ ∀ 𝑘 ∈ ω ( ( 2nd ∘ ℎ ) ‘ suc 𝑘 ) ∈ ( 𝑘 𝐹 ( ( 2nd ∘ ℎ ) ‘ 𝑘 ) ) ) ) |
219 |
211 213 218
|
3anbi123d |
⊢ ( 𝑔 = ( 2nd ∘ ℎ ) → ( ( 𝑔 : ω ⟶ 𝐴 ∧ ( 𝑔 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘 ∈ ω ( 𝑔 ‘ suc 𝑘 ) ∈ ( 𝑘 𝐹 ( 𝑔 ‘ 𝑘 ) ) ) ↔ ( ( 2nd ∘ ℎ ) : ω ⟶ 𝐴 ∧ ( ( 2nd ∘ ℎ ) ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘 ∈ ω ( ( 2nd ∘ ℎ ) ‘ suc 𝑘 ) ∈ ( 𝑘 𝐹 ( ( 2nd ∘ ℎ ) ‘ 𝑘 ) ) ) ) ) |
220 |
49 210 219
|
spcedv |
⊢ ( ( 𝐶 ∈ 𝐴 ∧ ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ ( ℎ ‘ ∅ ) = 〈 ∅ , 𝐶 〉 ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) ) → ∃ 𝑔 ( 𝑔 : ω ⟶ 𝐴 ∧ ( 𝑔 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘 ∈ ω ( 𝑔 ‘ suc 𝑘 ) ∈ ( 𝑘 𝐹 ( 𝑔 ‘ 𝑘 ) ) ) ) |
221 |
220
|
ex |
⊢ ( 𝐶 ∈ 𝐴 → ( ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ ( ℎ ‘ ∅ ) = 〈 ∅ , 𝐶 〉 ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) → ∃ 𝑔 ( 𝑔 : ω ⟶ 𝐴 ∧ ( 𝑔 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘 ∈ ω ( 𝑔 ‘ suc 𝑘 ) ∈ ( 𝑘 𝐹 ( 𝑔 ‘ 𝑘 ) ) ) ) ) |
222 |
221
|
exlimdv |
⊢ ( 𝐶 ∈ 𝐴 → ( ∃ ℎ ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ ( ℎ ‘ ∅ ) = 〈 ∅ , 𝐶 〉 ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) → ∃ 𝑔 ( 𝑔 : ω ⟶ 𝐴 ∧ ( 𝑔 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘 ∈ ω ( 𝑔 ‘ suc 𝑘 ) ∈ ( 𝑘 𝐹 ( 𝑔 ‘ 𝑘 ) ) ) ) ) |
223 |
222
|
adantr |
⊢ ( ( 𝐶 ∈ 𝐴 ∧ 𝐹 : ( ω × 𝐴 ) ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) ) → ( ∃ ℎ ( ℎ : ω ⟶ ( ω × 𝐴 ) ∧ ( ℎ ‘ ∅ ) = 〈 ∅ , 𝐶 〉 ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) → ∃ 𝑔 ( 𝑔 : ω ⟶ 𝐴 ∧ ( 𝑔 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘 ∈ ω ( 𝑔 ‘ suc 𝑘 ) ∈ ( 𝑘 𝐹 ( 𝑔 ‘ 𝑘 ) ) ) ) ) |
224 |
43 223
|
mpd |
⊢ ( ( 𝐶 ∈ 𝐴 ∧ 𝐹 : ( ω × 𝐴 ) ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) ) → ∃ 𝑔 ( 𝑔 : ω ⟶ 𝐴 ∧ ( 𝑔 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘 ∈ ω ( 𝑔 ‘ suc 𝑘 ) ∈ ( 𝑘 𝐹 ( 𝑔 ‘ 𝑘 ) ) ) ) |