Metamath Proof Explorer


Theorem axdc4lem

Description: Lemma for axdc4 . (Contributed by Mario Carneiro, 31-Jan-2013) (Revised by Mario Carneiro, 16-Nov-2013)

Ref Expression
Hypotheses axdc4lem.1 𝐴 ∈ V
axdc4lem.2 𝐺 = ( 𝑛 ∈ ω , 𝑥𝐴 ↦ ( { suc 𝑛 } × ( 𝑛 𝐹 𝑥 ) ) )
Assertion axdc4lem ( ( 𝐶𝐴𝐹 : ( ω × 𝐴 ) ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) ) → ∃ 𝑔 ( 𝑔 : ω ⟶ 𝐴 ∧ ( 𝑔 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘 ∈ ω ( 𝑔 ‘ suc 𝑘 ) ∈ ( 𝑘 𝐹 ( 𝑔𝑘 ) ) ) )

Proof

Step Hyp Ref Expression
1 axdc4lem.1 𝐴 ∈ V
2 axdc4lem.2 𝐺 = ( 𝑛 ∈ ω , 𝑥𝐴 ↦ ( { suc 𝑛 } × ( 𝑛 𝐹 𝑥 ) ) )
3 peano1 ∅ ∈ ω
4 opelxpi ( ( ∅ ∈ ω ∧ 𝐶𝐴 ) → ⟨ ∅ , 𝐶 ⟩ ∈ ( ω × 𝐴 ) )
5 3 4 mpan ( 𝐶𝐴 → ⟨ ∅ , 𝐶 ⟩ ∈ ( ω × 𝐴 ) )
6 simp2 ( ( 𝐹 : ( ω × 𝐴 ) ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) ∧ 𝑛 ∈ ω ∧ 𝑥𝐴 ) → 𝑛 ∈ ω )
7 fovrn ( ( 𝐹 : ( ω × 𝐴 ) ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) ∧ 𝑛 ∈ ω ∧ 𝑥𝐴 ) → ( 𝑛 𝐹 𝑥 ) ∈ ( 𝒫 𝐴 ∖ { ∅ } ) )
8 peano2 ( 𝑛 ∈ ω → suc 𝑛 ∈ ω )
9 8 snssd ( 𝑛 ∈ ω → { suc 𝑛 } ⊆ ω )
10 eldifi ( ( 𝑛 𝐹 𝑥 ) ∈ ( 𝒫 𝐴 ∖ { ∅ } ) → ( 𝑛 𝐹 𝑥 ) ∈ 𝒫 𝐴 )
11 1 elpw2 ( ( 𝑛 𝐹 𝑥 ) ∈ 𝒫 𝐴 ↔ ( 𝑛 𝐹 𝑥 ) ⊆ 𝐴 )
12 xpss12 ( ( { suc 𝑛 } ⊆ ω ∧ ( 𝑛 𝐹 𝑥 ) ⊆ 𝐴 ) → ( { suc 𝑛 } × ( 𝑛 𝐹 𝑥 ) ) ⊆ ( ω × 𝐴 ) )
13 11 12 sylan2b ( ( { suc 𝑛 } ⊆ ω ∧ ( 𝑛 𝐹 𝑥 ) ∈ 𝒫 𝐴 ) → ( { suc 𝑛 } × ( 𝑛 𝐹 𝑥 ) ) ⊆ ( ω × 𝐴 ) )
14 9 10 13 syl2an ( ( 𝑛 ∈ ω ∧ ( 𝑛 𝐹 𝑥 ) ∈ ( 𝒫 𝐴 ∖ { ∅ } ) ) → ( { suc 𝑛 } × ( 𝑛 𝐹 𝑥 ) ) ⊆ ( ω × 𝐴 ) )
15 snex { suc 𝑛 } ∈ V
16 ovex ( 𝑛 𝐹 𝑥 ) ∈ V
17 15 16 xpex ( { suc 𝑛 } × ( 𝑛 𝐹 𝑥 ) ) ∈ V
18 17 elpw ( ( { suc 𝑛 } × ( 𝑛 𝐹 𝑥 ) ) ∈ 𝒫 ( ω × 𝐴 ) ↔ ( { suc 𝑛 } × ( 𝑛 𝐹 𝑥 ) ) ⊆ ( ω × 𝐴 ) )
19 14 18 sylibr ( ( 𝑛 ∈ ω ∧ ( 𝑛 𝐹 𝑥 ) ∈ ( 𝒫 𝐴 ∖ { ∅ } ) ) → ( { suc 𝑛 } × ( 𝑛 𝐹 𝑥 ) ) ∈ 𝒫 ( ω × 𝐴 ) )
20 6 7 19 syl2anc ( ( 𝐹 : ( ω × 𝐴 ) ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) ∧ 𝑛 ∈ ω ∧ 𝑥𝐴 ) → ( { suc 𝑛 } × ( 𝑛 𝐹 𝑥 ) ) ∈ 𝒫 ( ω × 𝐴 ) )
21 eldifn ( ( 𝑛 𝐹 𝑥 ) ∈ ( 𝒫 𝐴 ∖ { ∅ } ) → ¬ ( 𝑛 𝐹 𝑥 ) ∈ { ∅ } )
22 16 elsn ( ( 𝑛 𝐹 𝑥 ) ∈ { ∅ } ↔ ( 𝑛 𝐹 𝑥 ) = ∅ )
23 22 necon3bbii ( ¬ ( 𝑛 𝐹 𝑥 ) ∈ { ∅ } ↔ ( 𝑛 𝐹 𝑥 ) ≠ ∅ )
24 vex 𝑛 ∈ V
25 24 sucex suc 𝑛 ∈ V
26 25 snnz { suc 𝑛 } ≠ ∅
27 xpnz ( ( { suc 𝑛 } ≠ ∅ ∧ ( 𝑛 𝐹 𝑥 ) ≠ ∅ ) ↔ ( { suc 𝑛 } × ( 𝑛 𝐹 𝑥 ) ) ≠ ∅ )
28 27 biimpi ( ( { suc 𝑛 } ≠ ∅ ∧ ( 𝑛 𝐹 𝑥 ) ≠ ∅ ) → ( { suc 𝑛 } × ( 𝑛 𝐹 𝑥 ) ) ≠ ∅ )
29 26 28 mpan ( ( 𝑛 𝐹 𝑥 ) ≠ ∅ → ( { suc 𝑛 } × ( 𝑛 𝐹 𝑥 ) ) ≠ ∅ )
30 23 29 sylbi ( ¬ ( 𝑛 𝐹 𝑥 ) ∈ { ∅ } → ( { suc 𝑛 } × ( 𝑛 𝐹 𝑥 ) ) ≠ ∅ )
31 17 elsn ( ( { suc 𝑛 } × ( 𝑛 𝐹 𝑥 ) ) ∈ { ∅ } ↔ ( { suc 𝑛 } × ( 𝑛 𝐹 𝑥 ) ) = ∅ )
32 31 necon3bbii ( ¬ ( { suc 𝑛 } × ( 𝑛 𝐹 𝑥 ) ) ∈ { ∅ } ↔ ( { suc 𝑛 } × ( 𝑛 𝐹 𝑥 ) ) ≠ ∅ )
33 30 32 sylibr ( ¬ ( 𝑛 𝐹 𝑥 ) ∈ { ∅ } → ¬ ( { suc 𝑛 } × ( 𝑛 𝐹 𝑥 ) ) ∈ { ∅ } )
34 7 21 33 3syl ( ( 𝐹 : ( ω × 𝐴 ) ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) ∧ 𝑛 ∈ ω ∧ 𝑥𝐴 ) → ¬ ( { suc 𝑛 } × ( 𝑛 𝐹 𝑥 ) ) ∈ { ∅ } )
35 20 34 eldifd ( ( 𝐹 : ( ω × 𝐴 ) ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) ∧ 𝑛 ∈ ω ∧ 𝑥𝐴 ) → ( { suc 𝑛 } × ( 𝑛 𝐹 𝑥 ) ) ∈ ( 𝒫 ( ω × 𝐴 ) ∖ { ∅ } ) )
36 35 3expib ( 𝐹 : ( ω × 𝐴 ) ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) → ( ( 𝑛 ∈ ω ∧ 𝑥𝐴 ) → ( { suc 𝑛 } × ( 𝑛 𝐹 𝑥 ) ) ∈ ( 𝒫 ( ω × 𝐴 ) ∖ { ∅ } ) ) )
37 36 ralrimivv ( 𝐹 : ( ω × 𝐴 ) ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) → ∀ 𝑛 ∈ ω ∀ 𝑥𝐴 ( { suc 𝑛 } × ( 𝑛 𝐹 𝑥 ) ) ∈ ( 𝒫 ( ω × 𝐴 ) ∖ { ∅ } ) )
38 2 fmpo ( ∀ 𝑛 ∈ ω ∀ 𝑥𝐴 ( { suc 𝑛 } × ( 𝑛 𝐹 𝑥 ) ) ∈ ( 𝒫 ( ω × 𝐴 ) ∖ { ∅ } ) ↔ 𝐺 : ( ω × 𝐴 ) ⟶ ( 𝒫 ( ω × 𝐴 ) ∖ { ∅ } ) )
39 37 38 sylib ( 𝐹 : ( ω × 𝐴 ) ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) → 𝐺 : ( ω × 𝐴 ) ⟶ ( 𝒫 ( ω × 𝐴 ) ∖ { ∅ } ) )
40 dcomex ω ∈ V
41 40 1 xpex ( ω × 𝐴 ) ∈ V
42 41 axdc3 ( ( ⟨ ∅ , 𝐶 ⟩ ∈ ( ω × 𝐴 ) ∧ 𝐺 : ( ω × 𝐴 ) ⟶ ( 𝒫 ( ω × 𝐴 ) ∖ { ∅ } ) ) → ∃ ( : ω ⟶ ( ω × 𝐴 ) ∧ ( ‘ ∅ ) = ⟨ ∅ , 𝐶 ⟩ ∧ ∀ 𝑘 ∈ ω ( ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( 𝑘 ) ) ) )
43 5 39 42 syl2an ( ( 𝐶𝐴𝐹 : ( ω × 𝐴 ) ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) ) → ∃ ( : ω ⟶ ( ω × 𝐴 ) ∧ ( ‘ ∅ ) = ⟨ ∅ , 𝐶 ⟩ ∧ ∀ 𝑘 ∈ ω ( ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( 𝑘 ) ) ) )
44 2ndcof ( : ω ⟶ ( ω × 𝐴 ) → ( 2nd ) : ω ⟶ 𝐴 )
45 44 3ad2ant1 ( ( : ω ⟶ ( ω × 𝐴 ) ∧ ( ‘ ∅ ) = ⟨ ∅ , 𝐶 ⟩ ∧ ∀ 𝑘 ∈ ω ( ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( 𝑘 ) ) ) → ( 2nd ) : ω ⟶ 𝐴 )
46 45 adantl ( ( 𝐶𝐴 ∧ ( : ω ⟶ ( ω × 𝐴 ) ∧ ( ‘ ∅ ) = ⟨ ∅ , 𝐶 ⟩ ∧ ∀ 𝑘 ∈ ω ( ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( 𝑘 ) ) ) ) → ( 2nd ) : ω ⟶ 𝐴 )
47 fex2 ( ( ( 2nd ) : ω ⟶ 𝐴 ∧ ω ∈ V ∧ 𝐴 ∈ V ) → ( 2nd ) ∈ V )
48 40 1 47 mp3an23 ( ( 2nd ) : ω ⟶ 𝐴 → ( 2nd ) ∈ V )
49 46 48 syl ( ( 𝐶𝐴 ∧ ( : ω ⟶ ( ω × 𝐴 ) ∧ ( ‘ ∅ ) = ⟨ ∅ , 𝐶 ⟩ ∧ ∀ 𝑘 ∈ ω ( ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( 𝑘 ) ) ) ) → ( 2nd ) ∈ V )
50 fvco3 ( ( : ω ⟶ ( ω × 𝐴 ) ∧ ∅ ∈ ω ) → ( ( 2nd ) ‘ ∅ ) = ( 2nd ‘ ( ‘ ∅ ) ) )
51 3 50 mpan2 ( : ω ⟶ ( ω × 𝐴 ) → ( ( 2nd ) ‘ ∅ ) = ( 2nd ‘ ( ‘ ∅ ) ) )
52 51 3ad2ant1 ( ( : ω ⟶ ( ω × 𝐴 ) ∧ ( ‘ ∅ ) = ⟨ ∅ , 𝐶 ⟩ ∧ ∀ 𝑘 ∈ ω ( ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( 𝑘 ) ) ) → ( ( 2nd ) ‘ ∅ ) = ( 2nd ‘ ( ‘ ∅ ) ) )
53 fveq2 ( ( ‘ ∅ ) = ⟨ ∅ , 𝐶 ⟩ → ( 2nd ‘ ( ‘ ∅ ) ) = ( 2nd ‘ ⟨ ∅ , 𝐶 ⟩ ) )
54 53 3ad2ant2 ( ( : ω ⟶ ( ω × 𝐴 ) ∧ ( ‘ ∅ ) = ⟨ ∅ , 𝐶 ⟩ ∧ ∀ 𝑘 ∈ ω ( ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( 𝑘 ) ) ) → ( 2nd ‘ ( ‘ ∅ ) ) = ( 2nd ‘ ⟨ ∅ , 𝐶 ⟩ ) )
55 52 54 eqtrd ( ( : ω ⟶ ( ω × 𝐴 ) ∧ ( ‘ ∅ ) = ⟨ ∅ , 𝐶 ⟩ ∧ ∀ 𝑘 ∈ ω ( ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( 𝑘 ) ) ) → ( ( 2nd ) ‘ ∅ ) = ( 2nd ‘ ⟨ ∅ , 𝐶 ⟩ ) )
56 op2ndg ( ( ∅ ∈ ω ∧ 𝐶𝐴 ) → ( 2nd ‘ ⟨ ∅ , 𝐶 ⟩ ) = 𝐶 )
57 3 56 mpan ( 𝐶𝐴 → ( 2nd ‘ ⟨ ∅ , 𝐶 ⟩ ) = 𝐶 )
58 55 57 sylan9eqr ( ( 𝐶𝐴 ∧ ( : ω ⟶ ( ω × 𝐴 ) ∧ ( ‘ ∅ ) = ⟨ ∅ , 𝐶 ⟩ ∧ ∀ 𝑘 ∈ ω ( ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( 𝑘 ) ) ) ) → ( ( 2nd ) ‘ ∅ ) = 𝐶 )
59 nfv 𝑘 𝐶𝐴
60 nfv 𝑘 : ω ⟶ ( ω × 𝐴 )
61 nfv 𝑘 ( ‘ ∅ ) = ⟨ ∅ , 𝐶
62 nfra1 𝑘𝑘 ∈ ω ( ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( 𝑘 ) )
63 60 61 62 nf3an 𝑘 ( : ω ⟶ ( ω × 𝐴 ) ∧ ( ‘ ∅ ) = ⟨ ∅ , 𝐶 ⟩ ∧ ∀ 𝑘 ∈ ω ( ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( 𝑘 ) ) )
64 59 63 nfan 𝑘 ( 𝐶𝐴 ∧ ( : ω ⟶ ( ω × 𝐴 ) ∧ ( ‘ ∅ ) = ⟨ ∅ , 𝐶 ⟩ ∧ ∀ 𝑘 ∈ ω ( ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( 𝑘 ) ) ) )
65 fveq2 ( 𝑚 = ∅ → ( 𝑚 ) = ( ‘ ∅ ) )
66 opeq1 ( 𝑚 = ∅ → ⟨ 𝑚 , 𝑧 ⟩ = ⟨ ∅ , 𝑧 ⟩ )
67 65 66 eqeq12d ( 𝑚 = ∅ → ( ( 𝑚 ) = ⟨ 𝑚 , 𝑧 ⟩ ↔ ( ‘ ∅ ) = ⟨ ∅ , 𝑧 ⟩ ) )
68 67 exbidv ( 𝑚 = ∅ → ( ∃ 𝑧 ( 𝑚 ) = ⟨ 𝑚 , 𝑧 ⟩ ↔ ∃ 𝑧 ( ‘ ∅ ) = ⟨ ∅ , 𝑧 ⟩ ) )
69 fveq2 ( 𝑚 = 𝑖 → ( 𝑚 ) = ( 𝑖 ) )
70 opeq1 ( 𝑚 = 𝑖 → ⟨ 𝑚 , 𝑧 ⟩ = ⟨ 𝑖 , 𝑧 ⟩ )
71 69 70 eqeq12d ( 𝑚 = 𝑖 → ( ( 𝑚 ) = ⟨ 𝑚 , 𝑧 ⟩ ↔ ( 𝑖 ) = ⟨ 𝑖 , 𝑧 ⟩ ) )
72 71 exbidv ( 𝑚 = 𝑖 → ( ∃ 𝑧 ( 𝑚 ) = ⟨ 𝑚 , 𝑧 ⟩ ↔ ∃ 𝑧 ( 𝑖 ) = ⟨ 𝑖 , 𝑧 ⟩ ) )
73 fveq2 ( 𝑚 = suc 𝑖 → ( 𝑚 ) = ( ‘ suc 𝑖 ) )
74 opeq1 ( 𝑚 = suc 𝑖 → ⟨ 𝑚 , 𝑧 ⟩ = ⟨ suc 𝑖 , 𝑧 ⟩ )
75 73 74 eqeq12d ( 𝑚 = suc 𝑖 → ( ( 𝑚 ) = ⟨ 𝑚 , 𝑧 ⟩ ↔ ( ‘ suc 𝑖 ) = ⟨ suc 𝑖 , 𝑧 ⟩ ) )
76 75 exbidv ( 𝑚 = suc 𝑖 → ( ∃ 𝑧 ( 𝑚 ) = ⟨ 𝑚 , 𝑧 ⟩ ↔ ∃ 𝑧 ( ‘ suc 𝑖 ) = ⟨ suc 𝑖 , 𝑧 ⟩ ) )
77 opeq2 ( 𝑧 = 𝐶 → ⟨ ∅ , 𝑧 ⟩ = ⟨ ∅ , 𝐶 ⟩ )
78 77 eqeq2d ( 𝑧 = 𝐶 → ( ( ‘ ∅ ) = ⟨ ∅ , 𝑧 ⟩ ↔ ( ‘ ∅ ) = ⟨ ∅ , 𝐶 ⟩ ) )
79 78 spcegv ( 𝐶𝐴 → ( ( ‘ ∅ ) = ⟨ ∅ , 𝐶 ⟩ → ∃ 𝑧 ( ‘ ∅ ) = ⟨ ∅ , 𝑧 ⟩ ) )
80 79 imp ( ( 𝐶𝐴 ∧ ( ‘ ∅ ) = ⟨ ∅ , 𝐶 ⟩ ) → ∃ 𝑧 ( ‘ ∅ ) = ⟨ ∅ , 𝑧 ⟩ )
81 80 3ad2antr2 ( ( 𝐶𝐴 ∧ ( : ω ⟶ ( ω × 𝐴 ) ∧ ( ‘ ∅ ) = ⟨ ∅ , 𝐶 ⟩ ∧ ∀ 𝑘 ∈ ω ( ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( 𝑘 ) ) ) ) → ∃ 𝑧 ( ‘ ∅ ) = ⟨ ∅ , 𝑧 ⟩ )
82 fveq2 ( ( 𝑖 ) = ⟨ 𝑖 , 𝑧 ⟩ → ( 𝐺 ‘ ( 𝑖 ) ) = ( 𝐺 ‘ ⟨ 𝑖 , 𝑧 ⟩ ) )
83 df-ov ( 𝑖 𝐺 𝑧 ) = ( 𝐺 ‘ ⟨ 𝑖 , 𝑧 ⟩ )
84 82 83 eqtr4di ( ( 𝑖 ) = ⟨ 𝑖 , 𝑧 ⟩ → ( 𝐺 ‘ ( 𝑖 ) ) = ( 𝑖 𝐺 𝑧 ) )
85 84 adantl ( ( ( : ω ⟶ ( ω × 𝐴 ) ∧ 𝑖 ∈ ω ) ∧ ( 𝑖 ) = ⟨ 𝑖 , 𝑧 ⟩ ) → ( 𝐺 ‘ ( 𝑖 ) ) = ( 𝑖 𝐺 𝑧 ) )
86 simplr ( ( ( : ω ⟶ ( ω × 𝐴 ) ∧ 𝑖 ∈ ω ) ∧ ( 𝑖 ) = ⟨ 𝑖 , 𝑧 ⟩ ) → 𝑖 ∈ ω )
87 ffvelrn ( ( : ω ⟶ ( ω × 𝐴 ) ∧ 𝑖 ∈ ω ) → ( 𝑖 ) ∈ ( ω × 𝐴 ) )
88 eleq1 ( ( 𝑖 ) = ⟨ 𝑖 , 𝑧 ⟩ → ( ( 𝑖 ) ∈ ( ω × 𝐴 ) ↔ ⟨ 𝑖 , 𝑧 ⟩ ∈ ( ω × 𝐴 ) ) )
89 opelxp2 ( ⟨ 𝑖 , 𝑧 ⟩ ∈ ( ω × 𝐴 ) → 𝑧𝐴 )
90 88 89 syl6bi ( ( 𝑖 ) = ⟨ 𝑖 , 𝑧 ⟩ → ( ( 𝑖 ) ∈ ( ω × 𝐴 ) → 𝑧𝐴 ) )
91 87 90 mpan9 ( ( ( : ω ⟶ ( ω × 𝐴 ) ∧ 𝑖 ∈ ω ) ∧ ( 𝑖 ) = ⟨ 𝑖 , 𝑧 ⟩ ) → 𝑧𝐴 )
92 suceq ( 𝑛 = 𝑖 → suc 𝑛 = suc 𝑖 )
93 92 sneqd ( 𝑛 = 𝑖 → { suc 𝑛 } = { suc 𝑖 } )
94 oveq1 ( 𝑛 = 𝑖 → ( 𝑛 𝐹 𝑥 ) = ( 𝑖 𝐹 𝑥 ) )
95 93 94 xpeq12d ( 𝑛 = 𝑖 → ( { suc 𝑛 } × ( 𝑛 𝐹 𝑥 ) ) = ( { suc 𝑖 } × ( 𝑖 𝐹 𝑥 ) ) )
96 oveq2 ( 𝑥 = 𝑧 → ( 𝑖 𝐹 𝑥 ) = ( 𝑖 𝐹 𝑧 ) )
97 96 xpeq2d ( 𝑥 = 𝑧 → ( { suc 𝑖 } × ( 𝑖 𝐹 𝑥 ) ) = ( { suc 𝑖 } × ( 𝑖 𝐹 𝑧 ) ) )
98 snex { suc 𝑖 } ∈ V
99 ovex ( 𝑖 𝐹 𝑧 ) ∈ V
100 98 99 xpex ( { suc 𝑖 } × ( 𝑖 𝐹 𝑧 ) ) ∈ V
101 95 97 2 100 ovmpo ( ( 𝑖 ∈ ω ∧ 𝑧𝐴 ) → ( 𝑖 𝐺 𝑧 ) = ( { suc 𝑖 } × ( 𝑖 𝐹 𝑧 ) ) )
102 86 91 101 syl2anc ( ( ( : ω ⟶ ( ω × 𝐴 ) ∧ 𝑖 ∈ ω ) ∧ ( 𝑖 ) = ⟨ 𝑖 , 𝑧 ⟩ ) → ( 𝑖 𝐺 𝑧 ) = ( { suc 𝑖 } × ( 𝑖 𝐹 𝑧 ) ) )
103 85 102 eqtrd ( ( ( : ω ⟶ ( ω × 𝐴 ) ∧ 𝑖 ∈ ω ) ∧ ( 𝑖 ) = ⟨ 𝑖 , 𝑧 ⟩ ) → ( 𝐺 ‘ ( 𝑖 ) ) = ( { suc 𝑖 } × ( 𝑖 𝐹 𝑧 ) ) )
104 suceq ( 𝑘 = 𝑖 → suc 𝑘 = suc 𝑖 )
105 104 fveq2d ( 𝑘 = 𝑖 → ( ‘ suc 𝑘 ) = ( ‘ suc 𝑖 ) )
106 2fveq3 ( 𝑘 = 𝑖 → ( 𝐺 ‘ ( 𝑘 ) ) = ( 𝐺 ‘ ( 𝑖 ) ) )
107 105 106 eleq12d ( 𝑘 = 𝑖 → ( ( ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( 𝑘 ) ) ↔ ( ‘ suc 𝑖 ) ∈ ( 𝐺 ‘ ( 𝑖 ) ) ) )
108 107 rspcv ( 𝑖 ∈ ω → ( ∀ 𝑘 ∈ ω ( ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( 𝑘 ) ) → ( ‘ suc 𝑖 ) ∈ ( 𝐺 ‘ ( 𝑖 ) ) ) )
109 108 ad2antlr ( ( ( : ω ⟶ ( ω × 𝐴 ) ∧ 𝑖 ∈ ω ) ∧ ( 𝑖 ) = ⟨ 𝑖 , 𝑧 ⟩ ) → ( ∀ 𝑘 ∈ ω ( ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( 𝑘 ) ) → ( ‘ suc 𝑖 ) ∈ ( 𝐺 ‘ ( 𝑖 ) ) ) )
110 eleq2 ( ( 𝐺 ‘ ( 𝑖 ) ) = ( { suc 𝑖 } × ( 𝑖 𝐹 𝑧 ) ) → ( ( ‘ suc 𝑖 ) ∈ ( 𝐺 ‘ ( 𝑖 ) ) ↔ ( ‘ suc 𝑖 ) ∈ ( { suc 𝑖 } × ( 𝑖 𝐹 𝑧 ) ) ) )
111 elxp ( ( ‘ suc 𝑖 ) ∈ ( { suc 𝑖 } × ( 𝑖 𝐹 𝑧 ) ) ↔ ∃ 𝑠𝑡 ( ( ‘ suc 𝑖 ) = ⟨ 𝑠 , 𝑡 ⟩ ∧ ( 𝑠 ∈ { suc 𝑖 } ∧ 𝑡 ∈ ( 𝑖 𝐹 𝑧 ) ) ) )
112 velsn ( 𝑠 ∈ { suc 𝑖 } ↔ 𝑠 = suc 𝑖 )
113 opeq1 ( 𝑠 = suc 𝑖 → ⟨ 𝑠 , 𝑡 ⟩ = ⟨ suc 𝑖 , 𝑡 ⟩ )
114 112 113 sylbi ( 𝑠 ∈ { suc 𝑖 } → ⟨ 𝑠 , 𝑡 ⟩ = ⟨ suc 𝑖 , 𝑡 ⟩ )
115 114 eqeq2d ( 𝑠 ∈ { suc 𝑖 } → ( ( ‘ suc 𝑖 ) = ⟨ 𝑠 , 𝑡 ⟩ ↔ ( ‘ suc 𝑖 ) = ⟨ suc 𝑖 , 𝑡 ⟩ ) )
116 115 biimpac ( ( ( ‘ suc 𝑖 ) = ⟨ 𝑠 , 𝑡 ⟩ ∧ 𝑠 ∈ { suc 𝑖 } ) → ( ‘ suc 𝑖 ) = ⟨ suc 𝑖 , 𝑡 ⟩ )
117 116 adantrr ( ( ( ‘ suc 𝑖 ) = ⟨ 𝑠 , 𝑡 ⟩ ∧ ( 𝑠 ∈ { suc 𝑖 } ∧ 𝑡 ∈ ( 𝑖 𝐹 𝑧 ) ) ) → ( ‘ suc 𝑖 ) = ⟨ suc 𝑖 , 𝑡 ⟩ )
118 117 eximi ( ∃ 𝑡 ( ( ‘ suc 𝑖 ) = ⟨ 𝑠 , 𝑡 ⟩ ∧ ( 𝑠 ∈ { suc 𝑖 } ∧ 𝑡 ∈ ( 𝑖 𝐹 𝑧 ) ) ) → ∃ 𝑡 ( ‘ suc 𝑖 ) = ⟨ suc 𝑖 , 𝑡 ⟩ )
119 118 exlimiv ( ∃ 𝑠𝑡 ( ( ‘ suc 𝑖 ) = ⟨ 𝑠 , 𝑡 ⟩ ∧ ( 𝑠 ∈ { suc 𝑖 } ∧ 𝑡 ∈ ( 𝑖 𝐹 𝑧 ) ) ) → ∃ 𝑡 ( ‘ suc 𝑖 ) = ⟨ suc 𝑖 , 𝑡 ⟩ )
120 111 119 sylbi ( ( ‘ suc 𝑖 ) ∈ ( { suc 𝑖 } × ( 𝑖 𝐹 𝑧 ) ) → ∃ 𝑡 ( ‘ suc 𝑖 ) = ⟨ suc 𝑖 , 𝑡 ⟩ )
121 110 120 syl6bi ( ( 𝐺 ‘ ( 𝑖 ) ) = ( { suc 𝑖 } × ( 𝑖 𝐹 𝑧 ) ) → ( ( ‘ suc 𝑖 ) ∈ ( 𝐺 ‘ ( 𝑖 ) ) → ∃ 𝑡 ( ‘ suc 𝑖 ) = ⟨ suc 𝑖 , 𝑡 ⟩ ) )
122 103 109 121 sylsyld ( ( ( : ω ⟶ ( ω × 𝐴 ) ∧ 𝑖 ∈ ω ) ∧ ( 𝑖 ) = ⟨ 𝑖 , 𝑧 ⟩ ) → ( ∀ 𝑘 ∈ ω ( ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( 𝑘 ) ) → ∃ 𝑡 ( ‘ suc 𝑖 ) = ⟨ suc 𝑖 , 𝑡 ⟩ ) )
123 122 expcom ( ( 𝑖 ) = ⟨ 𝑖 , 𝑧 ⟩ → ( ( : ω ⟶ ( ω × 𝐴 ) ∧ 𝑖 ∈ ω ) → ( ∀ 𝑘 ∈ ω ( ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( 𝑘 ) ) → ∃ 𝑡 ( ‘ suc 𝑖 ) = ⟨ suc 𝑖 , 𝑡 ⟩ ) ) )
124 123 exlimiv ( ∃ 𝑧 ( 𝑖 ) = ⟨ 𝑖 , 𝑧 ⟩ → ( ( : ω ⟶ ( ω × 𝐴 ) ∧ 𝑖 ∈ ω ) → ( ∀ 𝑘 ∈ ω ( ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( 𝑘 ) ) → ∃ 𝑡 ( ‘ suc 𝑖 ) = ⟨ suc 𝑖 , 𝑡 ⟩ ) ) )
125 124 com3l ( ( : ω ⟶ ( ω × 𝐴 ) ∧ 𝑖 ∈ ω ) → ( ∀ 𝑘 ∈ ω ( ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( 𝑘 ) ) → ( ∃ 𝑧 ( 𝑖 ) = ⟨ 𝑖 , 𝑧 ⟩ → ∃ 𝑡 ( ‘ suc 𝑖 ) = ⟨ suc 𝑖 , 𝑡 ⟩ ) ) )
126 opeq2 ( 𝑡 = 𝑧 → ⟨ suc 𝑖 , 𝑡 ⟩ = ⟨ suc 𝑖 , 𝑧 ⟩ )
127 126 eqeq2d ( 𝑡 = 𝑧 → ( ( ‘ suc 𝑖 ) = ⟨ suc 𝑖 , 𝑡 ⟩ ↔ ( ‘ suc 𝑖 ) = ⟨ suc 𝑖 , 𝑧 ⟩ ) )
128 127 cbvexvw ( ∃ 𝑡 ( ‘ suc 𝑖 ) = ⟨ suc 𝑖 , 𝑡 ⟩ ↔ ∃ 𝑧 ( ‘ suc 𝑖 ) = ⟨ suc 𝑖 , 𝑧 ⟩ )
129 125 128 syl8ib ( ( : ω ⟶ ( ω × 𝐴 ) ∧ 𝑖 ∈ ω ) → ( ∀ 𝑘 ∈ ω ( ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( 𝑘 ) ) → ( ∃ 𝑧 ( 𝑖 ) = ⟨ 𝑖 , 𝑧 ⟩ → ∃ 𝑧 ( ‘ suc 𝑖 ) = ⟨ suc 𝑖 , 𝑧 ⟩ ) ) )
130 129 impancom ( ( : ω ⟶ ( ω × 𝐴 ) ∧ ∀ 𝑘 ∈ ω ( ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( 𝑘 ) ) ) → ( 𝑖 ∈ ω → ( ∃ 𝑧 ( 𝑖 ) = ⟨ 𝑖 , 𝑧 ⟩ → ∃ 𝑧 ( ‘ suc 𝑖 ) = ⟨ suc 𝑖 , 𝑧 ⟩ ) ) )
131 130 3adant2 ( ( : ω ⟶ ( ω × 𝐴 ) ∧ ( ‘ ∅ ) = ⟨ ∅ , 𝐶 ⟩ ∧ ∀ 𝑘 ∈ ω ( ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( 𝑘 ) ) ) → ( 𝑖 ∈ ω → ( ∃ 𝑧 ( 𝑖 ) = ⟨ 𝑖 , 𝑧 ⟩ → ∃ 𝑧 ( ‘ suc 𝑖 ) = ⟨ suc 𝑖 , 𝑧 ⟩ ) ) )
132 131 adantl ( ( 𝐶𝐴 ∧ ( : ω ⟶ ( ω × 𝐴 ) ∧ ( ‘ ∅ ) = ⟨ ∅ , 𝐶 ⟩ ∧ ∀ 𝑘 ∈ ω ( ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( 𝑘 ) ) ) ) → ( 𝑖 ∈ ω → ( ∃ 𝑧 ( 𝑖 ) = ⟨ 𝑖 , 𝑧 ⟩ → ∃ 𝑧 ( ‘ suc 𝑖 ) = ⟨ suc 𝑖 , 𝑧 ⟩ ) ) )
133 132 com12 ( 𝑖 ∈ ω → ( ( 𝐶𝐴 ∧ ( : ω ⟶ ( ω × 𝐴 ) ∧ ( ‘ ∅ ) = ⟨ ∅ , 𝐶 ⟩ ∧ ∀ 𝑘 ∈ ω ( ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( 𝑘 ) ) ) ) → ( ∃ 𝑧 ( 𝑖 ) = ⟨ 𝑖 , 𝑧 ⟩ → ∃ 𝑧 ( ‘ suc 𝑖 ) = ⟨ suc 𝑖 , 𝑧 ⟩ ) ) )
134 68 72 76 81 133 finds2 ( 𝑚 ∈ ω → ( ( 𝐶𝐴 ∧ ( : ω ⟶ ( ω × 𝐴 ) ∧ ( ‘ ∅ ) = ⟨ ∅ , 𝐶 ⟩ ∧ ∀ 𝑘 ∈ ω ( ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( 𝑘 ) ) ) ) → ∃ 𝑧 ( 𝑚 ) = ⟨ 𝑚 , 𝑧 ⟩ ) )
135 134 com12 ( ( 𝐶𝐴 ∧ ( : ω ⟶ ( ω × 𝐴 ) ∧ ( ‘ ∅ ) = ⟨ ∅ , 𝐶 ⟩ ∧ ∀ 𝑘 ∈ ω ( ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( 𝑘 ) ) ) ) → ( 𝑚 ∈ ω → ∃ 𝑧 ( 𝑚 ) = ⟨ 𝑚 , 𝑧 ⟩ ) )
136 135 ralrimiv ( ( 𝐶𝐴 ∧ ( : ω ⟶ ( ω × 𝐴 ) ∧ ( ‘ ∅ ) = ⟨ ∅ , 𝐶 ⟩ ∧ ∀ 𝑘 ∈ ω ( ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( 𝑘 ) ) ) ) → ∀ 𝑚 ∈ ω ∃ 𝑧 ( 𝑚 ) = ⟨ 𝑚 , 𝑧 ⟩ )
137 fveq2 ( 𝑚 = 𝑘 → ( 𝑚 ) = ( 𝑘 ) )
138 opeq1 ( 𝑚 = 𝑘 → ⟨ 𝑚 , 𝑧 ⟩ = ⟨ 𝑘 , 𝑧 ⟩ )
139 137 138 eqeq12d ( 𝑚 = 𝑘 → ( ( 𝑚 ) = ⟨ 𝑚 , 𝑧 ⟩ ↔ ( 𝑘 ) = ⟨ 𝑘 , 𝑧 ⟩ ) )
140 139 exbidv ( 𝑚 = 𝑘 → ( ∃ 𝑧 ( 𝑚 ) = ⟨ 𝑚 , 𝑧 ⟩ ↔ ∃ 𝑧 ( 𝑘 ) = ⟨ 𝑘 , 𝑧 ⟩ ) )
141 140 rspccv ( ∀ 𝑚 ∈ ω ∃ 𝑧 ( 𝑚 ) = ⟨ 𝑚 , 𝑧 ⟩ → ( 𝑘 ∈ ω → ∃ 𝑧 ( 𝑘 ) = ⟨ 𝑘 , 𝑧 ⟩ ) )
142 136 141 syl ( ( 𝐶𝐴 ∧ ( : ω ⟶ ( ω × 𝐴 ) ∧ ( ‘ ∅ ) = ⟨ ∅ , 𝐶 ⟩ ∧ ∀ 𝑘 ∈ ω ( ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( 𝑘 ) ) ) ) → ( 𝑘 ∈ ω → ∃ 𝑧 ( 𝑘 ) = ⟨ 𝑘 , 𝑧 ⟩ ) )
143 142 3impia ( ( 𝐶𝐴 ∧ ( : ω ⟶ ( ω × 𝐴 ) ∧ ( ‘ ∅ ) = ⟨ ∅ , 𝐶 ⟩ ∧ ∀ 𝑘 ∈ ω ( ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( 𝑘 ) ) ) ∧ 𝑘 ∈ ω ) → ∃ 𝑧 ( 𝑘 ) = ⟨ 𝑘 , 𝑧 ⟩ )
144 simp21 ( ( 𝐶𝐴 ∧ ( : ω ⟶ ( ω × 𝐴 ) ∧ ( ‘ ∅ ) = ⟨ ∅ , 𝐶 ⟩ ∧ ∀ 𝑘 ∈ ω ( ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( 𝑘 ) ) ) ∧ 𝑘 ∈ ω ) → : ω ⟶ ( ω × 𝐴 ) )
145 simp3 ( ( 𝐶𝐴 ∧ ( : ω ⟶ ( ω × 𝐴 ) ∧ ( ‘ ∅ ) = ⟨ ∅ , 𝐶 ⟩ ∧ ∀ 𝑘 ∈ ω ( ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( 𝑘 ) ) ) ∧ 𝑘 ∈ ω ) → 𝑘 ∈ ω )
146 rspa ( ( ∀ 𝑘 ∈ ω ( ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( 𝑘 ) ) ∧ 𝑘 ∈ ω ) → ( ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( 𝑘 ) ) )
147 146 3ad2antl3 ( ( ( : ω ⟶ ( ω × 𝐴 ) ∧ ( ‘ ∅ ) = ⟨ ∅ , 𝐶 ⟩ ∧ ∀ 𝑘 ∈ ω ( ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( 𝑘 ) ) ) ∧ 𝑘 ∈ ω ) → ( ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( 𝑘 ) ) )
148 147 3adant1 ( ( 𝐶𝐴 ∧ ( : ω ⟶ ( ω × 𝐴 ) ∧ ( ‘ ∅ ) = ⟨ ∅ , 𝐶 ⟩ ∧ ∀ 𝑘 ∈ ω ( ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( 𝑘 ) ) ) ∧ 𝑘 ∈ ω ) → ( ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( 𝑘 ) ) )
149 simpl ( ( ( 𝑘 ) = ⟨ 𝑘 , 𝑧 ⟩ ∧ ( : ω ⟶ ( ω × 𝐴 ) ∧ 𝑘 ∈ ω ) ) → ( 𝑘 ) = ⟨ 𝑘 , 𝑧 ⟩ )
150 149 fveq2d ( ( ( 𝑘 ) = ⟨ 𝑘 , 𝑧 ⟩ ∧ ( : ω ⟶ ( ω × 𝐴 ) ∧ 𝑘 ∈ ω ) ) → ( 𝐺 ‘ ( 𝑘 ) ) = ( 𝐺 ‘ ⟨ 𝑘 , 𝑧 ⟩ ) )
151 simprr ( ( ( 𝑘 ) = ⟨ 𝑘 , 𝑧 ⟩ ∧ ( : ω ⟶ ( ω × 𝐴 ) ∧ 𝑘 ∈ ω ) ) → 𝑘 ∈ ω )
152 eleq1 ( ( 𝑘 ) = ⟨ 𝑘 , 𝑧 ⟩ → ( ( 𝑘 ) ∈ ( ω × 𝐴 ) ↔ ⟨ 𝑘 , 𝑧 ⟩ ∈ ( ω × 𝐴 ) ) )
153 opelxp2 ( ⟨ 𝑘 , 𝑧 ⟩ ∈ ( ω × 𝐴 ) → 𝑧𝐴 )
154 152 153 syl6bi ( ( 𝑘 ) = ⟨ 𝑘 , 𝑧 ⟩ → ( ( 𝑘 ) ∈ ( ω × 𝐴 ) → 𝑧𝐴 ) )
155 ffvelrn ( ( : ω ⟶ ( ω × 𝐴 ) ∧ 𝑘 ∈ ω ) → ( 𝑘 ) ∈ ( ω × 𝐴 ) )
156 154 155 impel ( ( ( 𝑘 ) = ⟨ 𝑘 , 𝑧 ⟩ ∧ ( : ω ⟶ ( ω × 𝐴 ) ∧ 𝑘 ∈ ω ) ) → 𝑧𝐴 )
157 df-ov ( 𝑘 𝐺 𝑧 ) = ( 𝐺 ‘ ⟨ 𝑘 , 𝑧 ⟩ )
158 suceq ( 𝑛 = 𝑘 → suc 𝑛 = suc 𝑘 )
159 158 sneqd ( 𝑛 = 𝑘 → { suc 𝑛 } = { suc 𝑘 } )
160 oveq1 ( 𝑛 = 𝑘 → ( 𝑛 𝐹 𝑥 ) = ( 𝑘 𝐹 𝑥 ) )
161 159 160 xpeq12d ( 𝑛 = 𝑘 → ( { suc 𝑛 } × ( 𝑛 𝐹 𝑥 ) ) = ( { suc 𝑘 } × ( 𝑘 𝐹 𝑥 ) ) )
162 oveq2 ( 𝑥 = 𝑧 → ( 𝑘 𝐹 𝑥 ) = ( 𝑘 𝐹 𝑧 ) )
163 162 xpeq2d ( 𝑥 = 𝑧 → ( { suc 𝑘 } × ( 𝑘 𝐹 𝑥 ) ) = ( { suc 𝑘 } × ( 𝑘 𝐹 𝑧 ) ) )
164 snex { suc 𝑘 } ∈ V
165 ovex ( 𝑘 𝐹 𝑧 ) ∈ V
166 164 165 xpex ( { suc 𝑘 } × ( 𝑘 𝐹 𝑧 ) ) ∈ V
167 161 163 2 166 ovmpo ( ( 𝑘 ∈ ω ∧ 𝑧𝐴 ) → ( 𝑘 𝐺 𝑧 ) = ( { suc 𝑘 } × ( 𝑘 𝐹 𝑧 ) ) )
168 157 167 eqtr3id ( ( 𝑘 ∈ ω ∧ 𝑧𝐴 ) → ( 𝐺 ‘ ⟨ 𝑘 , 𝑧 ⟩ ) = ( { suc 𝑘 } × ( 𝑘 𝐹 𝑧 ) ) )
169 151 156 168 syl2anc ( ( ( 𝑘 ) = ⟨ 𝑘 , 𝑧 ⟩ ∧ ( : ω ⟶ ( ω × 𝐴 ) ∧ 𝑘 ∈ ω ) ) → ( 𝐺 ‘ ⟨ 𝑘 , 𝑧 ⟩ ) = ( { suc 𝑘 } × ( 𝑘 𝐹 𝑧 ) ) )
170 150 169 eqtrd ( ( ( 𝑘 ) = ⟨ 𝑘 , 𝑧 ⟩ ∧ ( : ω ⟶ ( ω × 𝐴 ) ∧ 𝑘 ∈ ω ) ) → ( 𝐺 ‘ ( 𝑘 ) ) = ( { suc 𝑘 } × ( 𝑘 𝐹 𝑧 ) ) )
171 170 eleq2d ( ( ( 𝑘 ) = ⟨ 𝑘 , 𝑧 ⟩ ∧ ( : ω ⟶ ( ω × 𝐴 ) ∧ 𝑘 ∈ ω ) ) → ( ( ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( 𝑘 ) ) ↔ ( ‘ suc 𝑘 ) ∈ ( { suc 𝑘 } × ( 𝑘 𝐹 𝑧 ) ) ) )
172 elxp ( ( ‘ suc 𝑘 ) ∈ ( { suc 𝑘 } × ( 𝑘 𝐹 𝑧 ) ) ↔ ∃ 𝑠𝑡 ( ( ‘ suc 𝑘 ) = ⟨ 𝑠 , 𝑡 ⟩ ∧ ( 𝑠 ∈ { suc 𝑘 } ∧ 𝑡 ∈ ( 𝑘 𝐹 𝑧 ) ) ) )
173 peano2 ( 𝑘 ∈ ω → suc 𝑘 ∈ ω )
174 fvco3 ( ( : ω ⟶ ( ω × 𝐴 ) ∧ suc 𝑘 ∈ ω ) → ( ( 2nd ) ‘ suc 𝑘 ) = ( 2nd ‘ ( ‘ suc 𝑘 ) ) )
175 173 174 sylan2 ( ( : ω ⟶ ( ω × 𝐴 ) ∧ 𝑘 ∈ ω ) → ( ( 2nd ) ‘ suc 𝑘 ) = ( 2nd ‘ ( ‘ suc 𝑘 ) ) )
176 175 adantl ( ( ( ( ‘ suc 𝑘 ) = ⟨ 𝑠 , 𝑡 ⟩ ∧ ( 𝑘 ) = ⟨ 𝑘 , 𝑧 ⟩ ) ∧ ( : ω ⟶ ( ω × 𝐴 ) ∧ 𝑘 ∈ ω ) ) → ( ( 2nd ) ‘ suc 𝑘 ) = ( 2nd ‘ ( ‘ suc 𝑘 ) ) )
177 simpll ( ( ( ( ‘ suc 𝑘 ) = ⟨ 𝑠 , 𝑡 ⟩ ∧ ( 𝑘 ) = ⟨ 𝑘 , 𝑧 ⟩ ) ∧ ( : ω ⟶ ( ω × 𝐴 ) ∧ 𝑘 ∈ ω ) ) → ( ‘ suc 𝑘 ) = ⟨ 𝑠 , 𝑡 ⟩ )
178 177 fveq2d ( ( ( ( ‘ suc 𝑘 ) = ⟨ 𝑠 , 𝑡 ⟩ ∧ ( 𝑘 ) = ⟨ 𝑘 , 𝑧 ⟩ ) ∧ ( : ω ⟶ ( ω × 𝐴 ) ∧ 𝑘 ∈ ω ) ) → ( 2nd ‘ ( ‘ suc 𝑘 ) ) = ( 2nd ‘ ⟨ 𝑠 , 𝑡 ⟩ ) )
179 176 178 eqtrd ( ( ( ( ‘ suc 𝑘 ) = ⟨ 𝑠 , 𝑡 ⟩ ∧ ( 𝑘 ) = ⟨ 𝑘 , 𝑧 ⟩ ) ∧ ( : ω ⟶ ( ω × 𝐴 ) ∧ 𝑘 ∈ ω ) ) → ( ( 2nd ) ‘ suc 𝑘 ) = ( 2nd ‘ ⟨ 𝑠 , 𝑡 ⟩ ) )
180 vex 𝑠 ∈ V
181 vex 𝑡 ∈ V
182 180 181 op2nd ( 2nd ‘ ⟨ 𝑠 , 𝑡 ⟩ ) = 𝑡
183 179 182 eqtrdi ( ( ( ( ‘ suc 𝑘 ) = ⟨ 𝑠 , 𝑡 ⟩ ∧ ( 𝑘 ) = ⟨ 𝑘 , 𝑧 ⟩ ) ∧ ( : ω ⟶ ( ω × 𝐴 ) ∧ 𝑘 ∈ ω ) ) → ( ( 2nd ) ‘ suc 𝑘 ) = 𝑡 )
184 fvco3 ( ( : ω ⟶ ( ω × 𝐴 ) ∧ 𝑘 ∈ ω ) → ( ( 2nd ) ‘ 𝑘 ) = ( 2nd ‘ ( 𝑘 ) ) )
185 184 adantl ( ( ( ( ‘ suc 𝑘 ) = ⟨ 𝑠 , 𝑡 ⟩ ∧ ( 𝑘 ) = ⟨ 𝑘 , 𝑧 ⟩ ) ∧ ( : ω ⟶ ( ω × 𝐴 ) ∧ 𝑘 ∈ ω ) ) → ( ( 2nd ) ‘ 𝑘 ) = ( 2nd ‘ ( 𝑘 ) ) )
186 simplr ( ( ( ( ‘ suc 𝑘 ) = ⟨ 𝑠 , 𝑡 ⟩ ∧ ( 𝑘 ) = ⟨ 𝑘 , 𝑧 ⟩ ) ∧ ( : ω ⟶ ( ω × 𝐴 ) ∧ 𝑘 ∈ ω ) ) → ( 𝑘 ) = ⟨ 𝑘 , 𝑧 ⟩ )
187 186 fveq2d ( ( ( ( ‘ suc 𝑘 ) = ⟨ 𝑠 , 𝑡 ⟩ ∧ ( 𝑘 ) = ⟨ 𝑘 , 𝑧 ⟩ ) ∧ ( : ω ⟶ ( ω × 𝐴 ) ∧ 𝑘 ∈ ω ) ) → ( 2nd ‘ ( 𝑘 ) ) = ( 2nd ‘ ⟨ 𝑘 , 𝑧 ⟩ ) )
188 185 187 eqtrd ( ( ( ( ‘ suc 𝑘 ) = ⟨ 𝑠 , 𝑡 ⟩ ∧ ( 𝑘 ) = ⟨ 𝑘 , 𝑧 ⟩ ) ∧ ( : ω ⟶ ( ω × 𝐴 ) ∧ 𝑘 ∈ ω ) ) → ( ( 2nd ) ‘ 𝑘 ) = ( 2nd ‘ ⟨ 𝑘 , 𝑧 ⟩ ) )
189 vex 𝑘 ∈ V
190 vex 𝑧 ∈ V
191 189 190 op2nd ( 2nd ‘ ⟨ 𝑘 , 𝑧 ⟩ ) = 𝑧
192 188 191 eqtrdi ( ( ( ( ‘ suc 𝑘 ) = ⟨ 𝑠 , 𝑡 ⟩ ∧ ( 𝑘 ) = ⟨ 𝑘 , 𝑧 ⟩ ) ∧ ( : ω ⟶ ( ω × 𝐴 ) ∧ 𝑘 ∈ ω ) ) → ( ( 2nd ) ‘ 𝑘 ) = 𝑧 )
193 192 oveq2d ( ( ( ( ‘ suc 𝑘 ) = ⟨ 𝑠 , 𝑡 ⟩ ∧ ( 𝑘 ) = ⟨ 𝑘 , 𝑧 ⟩ ) ∧ ( : ω ⟶ ( ω × 𝐴 ) ∧ 𝑘 ∈ ω ) ) → ( 𝑘 𝐹 ( ( 2nd ) ‘ 𝑘 ) ) = ( 𝑘 𝐹 𝑧 ) )
194 183 193 eleq12d ( ( ( ( ‘ suc 𝑘 ) = ⟨ 𝑠 , 𝑡 ⟩ ∧ ( 𝑘 ) = ⟨ 𝑘 , 𝑧 ⟩ ) ∧ ( : ω ⟶ ( ω × 𝐴 ) ∧ 𝑘 ∈ ω ) ) → ( ( ( 2nd ) ‘ suc 𝑘 ) ∈ ( 𝑘 𝐹 ( ( 2nd ) ‘ 𝑘 ) ) ↔ 𝑡 ∈ ( 𝑘 𝐹 𝑧 ) ) )
195 194 biimprcd ( 𝑡 ∈ ( 𝑘 𝐹 𝑧 ) → ( ( ( ( ‘ suc 𝑘 ) = ⟨ 𝑠 , 𝑡 ⟩ ∧ ( 𝑘 ) = ⟨ 𝑘 , 𝑧 ⟩ ) ∧ ( : ω ⟶ ( ω × 𝐴 ) ∧ 𝑘 ∈ ω ) ) → ( ( 2nd ) ‘ suc 𝑘 ) ∈ ( 𝑘 𝐹 ( ( 2nd ) ‘ 𝑘 ) ) ) )
196 195 exp4c ( 𝑡 ∈ ( 𝑘 𝐹 𝑧 ) → ( ( ‘ suc 𝑘 ) = ⟨ 𝑠 , 𝑡 ⟩ → ( ( 𝑘 ) = ⟨ 𝑘 , 𝑧 ⟩ → ( ( : ω ⟶ ( ω × 𝐴 ) ∧ 𝑘 ∈ ω ) → ( ( 2nd ) ‘ suc 𝑘 ) ∈ ( 𝑘 𝐹 ( ( 2nd ) ‘ 𝑘 ) ) ) ) ) )
197 196 adantl ( ( 𝑠 ∈ { suc 𝑘 } ∧ 𝑡 ∈ ( 𝑘 𝐹 𝑧 ) ) → ( ( ‘ suc 𝑘 ) = ⟨ 𝑠 , 𝑡 ⟩ → ( ( 𝑘 ) = ⟨ 𝑘 , 𝑧 ⟩ → ( ( : ω ⟶ ( ω × 𝐴 ) ∧ 𝑘 ∈ ω ) → ( ( 2nd ) ‘ suc 𝑘 ) ∈ ( 𝑘 𝐹 ( ( 2nd ) ‘ 𝑘 ) ) ) ) ) )
198 197 impcom ( ( ( ‘ suc 𝑘 ) = ⟨ 𝑠 , 𝑡 ⟩ ∧ ( 𝑠 ∈ { suc 𝑘 } ∧ 𝑡 ∈ ( 𝑘 𝐹 𝑧 ) ) ) → ( ( 𝑘 ) = ⟨ 𝑘 , 𝑧 ⟩ → ( ( : ω ⟶ ( ω × 𝐴 ) ∧ 𝑘 ∈ ω ) → ( ( 2nd ) ‘ suc 𝑘 ) ∈ ( 𝑘 𝐹 ( ( 2nd ) ‘ 𝑘 ) ) ) ) )
199 198 exlimivv ( ∃ 𝑠𝑡 ( ( ‘ suc 𝑘 ) = ⟨ 𝑠 , 𝑡 ⟩ ∧ ( 𝑠 ∈ { suc 𝑘 } ∧ 𝑡 ∈ ( 𝑘 𝐹 𝑧 ) ) ) → ( ( 𝑘 ) = ⟨ 𝑘 , 𝑧 ⟩ → ( ( : ω ⟶ ( ω × 𝐴 ) ∧ 𝑘 ∈ ω ) → ( ( 2nd ) ‘ suc 𝑘 ) ∈ ( 𝑘 𝐹 ( ( 2nd ) ‘ 𝑘 ) ) ) ) )
200 172 199 sylbi ( ( ‘ suc 𝑘 ) ∈ ( { suc 𝑘 } × ( 𝑘 𝐹 𝑧 ) ) → ( ( 𝑘 ) = ⟨ 𝑘 , 𝑧 ⟩ → ( ( : ω ⟶ ( ω × 𝐴 ) ∧ 𝑘 ∈ ω ) → ( ( 2nd ) ‘ suc 𝑘 ) ∈ ( 𝑘 𝐹 ( ( 2nd ) ‘ 𝑘 ) ) ) ) )
201 200 com3l ( ( 𝑘 ) = ⟨ 𝑘 , 𝑧 ⟩ → ( ( : ω ⟶ ( ω × 𝐴 ) ∧ 𝑘 ∈ ω ) → ( ( ‘ suc 𝑘 ) ∈ ( { suc 𝑘 } × ( 𝑘 𝐹 𝑧 ) ) → ( ( 2nd ) ‘ suc 𝑘 ) ∈ ( 𝑘 𝐹 ( ( 2nd ) ‘ 𝑘 ) ) ) ) )
202 201 imp ( ( ( 𝑘 ) = ⟨ 𝑘 , 𝑧 ⟩ ∧ ( : ω ⟶ ( ω × 𝐴 ) ∧ 𝑘 ∈ ω ) ) → ( ( ‘ suc 𝑘 ) ∈ ( { suc 𝑘 } × ( 𝑘 𝐹 𝑧 ) ) → ( ( 2nd ) ‘ suc 𝑘 ) ∈ ( 𝑘 𝐹 ( ( 2nd ) ‘ 𝑘 ) ) ) )
203 171 202 sylbid ( ( ( 𝑘 ) = ⟨ 𝑘 , 𝑧 ⟩ ∧ ( : ω ⟶ ( ω × 𝐴 ) ∧ 𝑘 ∈ ω ) ) → ( ( ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( 𝑘 ) ) → ( ( 2nd ) ‘ suc 𝑘 ) ∈ ( 𝑘 𝐹 ( ( 2nd ) ‘ 𝑘 ) ) ) )
204 203 ex ( ( 𝑘 ) = ⟨ 𝑘 , 𝑧 ⟩ → ( ( : ω ⟶ ( ω × 𝐴 ) ∧ 𝑘 ∈ ω ) → ( ( ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( 𝑘 ) ) → ( ( 2nd ) ‘ suc 𝑘 ) ∈ ( 𝑘 𝐹 ( ( 2nd ) ‘ 𝑘 ) ) ) ) )
205 204 exlimiv ( ∃ 𝑧 ( 𝑘 ) = ⟨ 𝑘 , 𝑧 ⟩ → ( ( : ω ⟶ ( ω × 𝐴 ) ∧ 𝑘 ∈ ω ) → ( ( ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( 𝑘 ) ) → ( ( 2nd ) ‘ suc 𝑘 ) ∈ ( 𝑘 𝐹 ( ( 2nd ) ‘ 𝑘 ) ) ) ) )
206 205 3imp ( ( ∃ 𝑧 ( 𝑘 ) = ⟨ 𝑘 , 𝑧 ⟩ ∧ ( : ω ⟶ ( ω × 𝐴 ) ∧ 𝑘 ∈ ω ) ∧ ( ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( 𝑘 ) ) ) → ( ( 2nd ) ‘ suc 𝑘 ) ∈ ( 𝑘 𝐹 ( ( 2nd ) ‘ 𝑘 ) ) )
207 143 144 145 148 206 syl121anc ( ( 𝐶𝐴 ∧ ( : ω ⟶ ( ω × 𝐴 ) ∧ ( ‘ ∅ ) = ⟨ ∅ , 𝐶 ⟩ ∧ ∀ 𝑘 ∈ ω ( ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( 𝑘 ) ) ) ∧ 𝑘 ∈ ω ) → ( ( 2nd ) ‘ suc 𝑘 ) ∈ ( 𝑘 𝐹 ( ( 2nd ) ‘ 𝑘 ) ) )
208 207 3expia ( ( 𝐶𝐴 ∧ ( : ω ⟶ ( ω × 𝐴 ) ∧ ( ‘ ∅ ) = ⟨ ∅ , 𝐶 ⟩ ∧ ∀ 𝑘 ∈ ω ( ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( 𝑘 ) ) ) ) → ( 𝑘 ∈ ω → ( ( 2nd ) ‘ suc 𝑘 ) ∈ ( 𝑘 𝐹 ( ( 2nd ) ‘ 𝑘 ) ) ) )
209 64 208 ralrimi ( ( 𝐶𝐴 ∧ ( : ω ⟶ ( ω × 𝐴 ) ∧ ( ‘ ∅ ) = ⟨ ∅ , 𝐶 ⟩ ∧ ∀ 𝑘 ∈ ω ( ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( 𝑘 ) ) ) ) → ∀ 𝑘 ∈ ω ( ( 2nd ) ‘ suc 𝑘 ) ∈ ( 𝑘 𝐹 ( ( 2nd ) ‘ 𝑘 ) ) )
210 46 58 209 3jca ( ( 𝐶𝐴 ∧ ( : ω ⟶ ( ω × 𝐴 ) ∧ ( ‘ ∅ ) = ⟨ ∅ , 𝐶 ⟩ ∧ ∀ 𝑘 ∈ ω ( ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( 𝑘 ) ) ) ) → ( ( 2nd ) : ω ⟶ 𝐴 ∧ ( ( 2nd ) ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘 ∈ ω ( ( 2nd ) ‘ suc 𝑘 ) ∈ ( 𝑘 𝐹 ( ( 2nd ) ‘ 𝑘 ) ) ) )
211 feq1 ( 𝑔 = ( 2nd ) → ( 𝑔 : ω ⟶ 𝐴 ↔ ( 2nd ) : ω ⟶ 𝐴 ) )
212 fveq1 ( 𝑔 = ( 2nd ) → ( 𝑔 ‘ ∅ ) = ( ( 2nd ) ‘ ∅ ) )
213 212 eqeq1d ( 𝑔 = ( 2nd ) → ( ( 𝑔 ‘ ∅ ) = 𝐶 ↔ ( ( 2nd ) ‘ ∅ ) = 𝐶 ) )
214 fveq1 ( 𝑔 = ( 2nd ) → ( 𝑔 ‘ suc 𝑘 ) = ( ( 2nd ) ‘ suc 𝑘 ) )
215 fveq1 ( 𝑔 = ( 2nd ) → ( 𝑔𝑘 ) = ( ( 2nd ) ‘ 𝑘 ) )
216 215 oveq2d ( 𝑔 = ( 2nd ) → ( 𝑘 𝐹 ( 𝑔𝑘 ) ) = ( 𝑘 𝐹 ( ( 2nd ) ‘ 𝑘 ) ) )
217 214 216 eleq12d ( 𝑔 = ( 2nd ) → ( ( 𝑔 ‘ suc 𝑘 ) ∈ ( 𝑘 𝐹 ( 𝑔𝑘 ) ) ↔ ( ( 2nd ) ‘ suc 𝑘 ) ∈ ( 𝑘 𝐹 ( ( 2nd ) ‘ 𝑘 ) ) ) )
218 217 ralbidv ( 𝑔 = ( 2nd ) → ( ∀ 𝑘 ∈ ω ( 𝑔 ‘ suc 𝑘 ) ∈ ( 𝑘 𝐹 ( 𝑔𝑘 ) ) ↔ ∀ 𝑘 ∈ ω ( ( 2nd ) ‘ suc 𝑘 ) ∈ ( 𝑘 𝐹 ( ( 2nd ) ‘ 𝑘 ) ) ) )
219 211 213 218 3anbi123d ( 𝑔 = ( 2nd ) → ( ( 𝑔 : ω ⟶ 𝐴 ∧ ( 𝑔 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘 ∈ ω ( 𝑔 ‘ suc 𝑘 ) ∈ ( 𝑘 𝐹 ( 𝑔𝑘 ) ) ) ↔ ( ( 2nd ) : ω ⟶ 𝐴 ∧ ( ( 2nd ) ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘 ∈ ω ( ( 2nd ) ‘ suc 𝑘 ) ∈ ( 𝑘 𝐹 ( ( 2nd ) ‘ 𝑘 ) ) ) ) )
220 49 210 219 spcedv ( ( 𝐶𝐴 ∧ ( : ω ⟶ ( ω × 𝐴 ) ∧ ( ‘ ∅ ) = ⟨ ∅ , 𝐶 ⟩ ∧ ∀ 𝑘 ∈ ω ( ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( 𝑘 ) ) ) ) → ∃ 𝑔 ( 𝑔 : ω ⟶ 𝐴 ∧ ( 𝑔 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘 ∈ ω ( 𝑔 ‘ suc 𝑘 ) ∈ ( 𝑘 𝐹 ( 𝑔𝑘 ) ) ) )
221 220 ex ( 𝐶𝐴 → ( ( : ω ⟶ ( ω × 𝐴 ) ∧ ( ‘ ∅ ) = ⟨ ∅ , 𝐶 ⟩ ∧ ∀ 𝑘 ∈ ω ( ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( 𝑘 ) ) ) → ∃ 𝑔 ( 𝑔 : ω ⟶ 𝐴 ∧ ( 𝑔 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘 ∈ ω ( 𝑔 ‘ suc 𝑘 ) ∈ ( 𝑘 𝐹 ( 𝑔𝑘 ) ) ) ) )
222 221 exlimdv ( 𝐶𝐴 → ( ∃ ( : ω ⟶ ( ω × 𝐴 ) ∧ ( ‘ ∅ ) = ⟨ ∅ , 𝐶 ⟩ ∧ ∀ 𝑘 ∈ ω ( ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( 𝑘 ) ) ) → ∃ 𝑔 ( 𝑔 : ω ⟶ 𝐴 ∧ ( 𝑔 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘 ∈ ω ( 𝑔 ‘ suc 𝑘 ) ∈ ( 𝑘 𝐹 ( 𝑔𝑘 ) ) ) ) )
223 222 adantr ( ( 𝐶𝐴𝐹 : ( ω × 𝐴 ) ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) ) → ( ∃ ( : ω ⟶ ( ω × 𝐴 ) ∧ ( ‘ ∅ ) = ⟨ ∅ , 𝐶 ⟩ ∧ ∀ 𝑘 ∈ ω ( ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( 𝑘 ) ) ) → ∃ 𝑔 ( 𝑔 : ω ⟶ 𝐴 ∧ ( 𝑔 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘 ∈ ω ( 𝑔 ‘ suc 𝑘 ) ∈ ( 𝑘 𝐹 ( 𝑔𝑘 ) ) ) ) )
224 43 223 mpd ( ( 𝐶𝐴𝐹 : ( ω × 𝐴 ) ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) ) → ∃ 𝑔 ( 𝑔 : ω ⟶ 𝐴 ∧ ( 𝑔 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘 ∈ ω ( 𝑔 ‘ suc 𝑘 ) ∈ ( 𝑘 𝐹 ( 𝑔𝑘 ) ) ) )