Step |
Hyp |
Ref |
Expression |
1 |
|
axdc4uz.1 |
⊢ 𝑀 ∈ ℤ |
2 |
|
axdc4uz.2 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
3 |
|
eleq2 |
⊢ ( 𝑓 = 𝐴 → ( 𝐶 ∈ 𝑓 ↔ 𝐶 ∈ 𝐴 ) ) |
4 |
|
xpeq2 |
⊢ ( 𝑓 = 𝐴 → ( 𝑍 × 𝑓 ) = ( 𝑍 × 𝐴 ) ) |
5 |
|
pweq |
⊢ ( 𝑓 = 𝐴 → 𝒫 𝑓 = 𝒫 𝐴 ) |
6 |
5
|
difeq1d |
⊢ ( 𝑓 = 𝐴 → ( 𝒫 𝑓 ∖ { ∅ } ) = ( 𝒫 𝐴 ∖ { ∅ } ) ) |
7 |
4 6
|
feq23d |
⊢ ( 𝑓 = 𝐴 → ( 𝐹 : ( 𝑍 × 𝑓 ) ⟶ ( 𝒫 𝑓 ∖ { ∅ } ) ↔ 𝐹 : ( 𝑍 × 𝐴 ) ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) ) ) |
8 |
3 7
|
anbi12d |
⊢ ( 𝑓 = 𝐴 → ( ( 𝐶 ∈ 𝑓 ∧ 𝐹 : ( 𝑍 × 𝑓 ) ⟶ ( 𝒫 𝑓 ∖ { ∅ } ) ) ↔ ( 𝐶 ∈ 𝐴 ∧ 𝐹 : ( 𝑍 × 𝐴 ) ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) ) ) ) |
9 |
|
feq3 |
⊢ ( 𝑓 = 𝐴 → ( 𝑔 : 𝑍 ⟶ 𝑓 ↔ 𝑔 : 𝑍 ⟶ 𝐴 ) ) |
10 |
9
|
3anbi1d |
⊢ ( 𝑓 = 𝐴 → ( ( 𝑔 : 𝑍 ⟶ 𝑓 ∧ ( 𝑔 ‘ 𝑀 ) = 𝐶 ∧ ∀ 𝑘 ∈ 𝑍 ( 𝑔 ‘ ( 𝑘 + 1 ) ) ∈ ( 𝑘 𝐹 ( 𝑔 ‘ 𝑘 ) ) ) ↔ ( 𝑔 : 𝑍 ⟶ 𝐴 ∧ ( 𝑔 ‘ 𝑀 ) = 𝐶 ∧ ∀ 𝑘 ∈ 𝑍 ( 𝑔 ‘ ( 𝑘 + 1 ) ) ∈ ( 𝑘 𝐹 ( 𝑔 ‘ 𝑘 ) ) ) ) ) |
11 |
10
|
exbidv |
⊢ ( 𝑓 = 𝐴 → ( ∃ 𝑔 ( 𝑔 : 𝑍 ⟶ 𝑓 ∧ ( 𝑔 ‘ 𝑀 ) = 𝐶 ∧ ∀ 𝑘 ∈ 𝑍 ( 𝑔 ‘ ( 𝑘 + 1 ) ) ∈ ( 𝑘 𝐹 ( 𝑔 ‘ 𝑘 ) ) ) ↔ ∃ 𝑔 ( 𝑔 : 𝑍 ⟶ 𝐴 ∧ ( 𝑔 ‘ 𝑀 ) = 𝐶 ∧ ∀ 𝑘 ∈ 𝑍 ( 𝑔 ‘ ( 𝑘 + 1 ) ) ∈ ( 𝑘 𝐹 ( 𝑔 ‘ 𝑘 ) ) ) ) ) |
12 |
8 11
|
imbi12d |
⊢ ( 𝑓 = 𝐴 → ( ( ( 𝐶 ∈ 𝑓 ∧ 𝐹 : ( 𝑍 × 𝑓 ) ⟶ ( 𝒫 𝑓 ∖ { ∅ } ) ) → ∃ 𝑔 ( 𝑔 : 𝑍 ⟶ 𝑓 ∧ ( 𝑔 ‘ 𝑀 ) = 𝐶 ∧ ∀ 𝑘 ∈ 𝑍 ( 𝑔 ‘ ( 𝑘 + 1 ) ) ∈ ( 𝑘 𝐹 ( 𝑔 ‘ 𝑘 ) ) ) ) ↔ ( ( 𝐶 ∈ 𝐴 ∧ 𝐹 : ( 𝑍 × 𝐴 ) ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) ) → ∃ 𝑔 ( 𝑔 : 𝑍 ⟶ 𝐴 ∧ ( 𝑔 ‘ 𝑀 ) = 𝐶 ∧ ∀ 𝑘 ∈ 𝑍 ( 𝑔 ‘ ( 𝑘 + 1 ) ) ∈ ( 𝑘 𝐹 ( 𝑔 ‘ 𝑘 ) ) ) ) ) ) |
13 |
|
vex |
⊢ 𝑓 ∈ V |
14 |
|
eqid |
⊢ ( rec ( ( 𝑦 ∈ V ↦ ( 𝑦 + 1 ) ) , 𝑀 ) ↾ ω ) = ( rec ( ( 𝑦 ∈ V ↦ ( 𝑦 + 1 ) ) , 𝑀 ) ↾ ω ) |
15 |
|
eqid |
⊢ ( 𝑛 ∈ ω , 𝑥 ∈ 𝑓 ↦ ( ( ( rec ( ( 𝑦 ∈ V ↦ ( 𝑦 + 1 ) ) , 𝑀 ) ↾ ω ) ‘ 𝑛 ) 𝐹 𝑥 ) ) = ( 𝑛 ∈ ω , 𝑥 ∈ 𝑓 ↦ ( ( ( rec ( ( 𝑦 ∈ V ↦ ( 𝑦 + 1 ) ) , 𝑀 ) ↾ ω ) ‘ 𝑛 ) 𝐹 𝑥 ) ) |
16 |
1 2 13 14 15
|
axdc4uzlem |
⊢ ( ( 𝐶 ∈ 𝑓 ∧ 𝐹 : ( 𝑍 × 𝑓 ) ⟶ ( 𝒫 𝑓 ∖ { ∅ } ) ) → ∃ 𝑔 ( 𝑔 : 𝑍 ⟶ 𝑓 ∧ ( 𝑔 ‘ 𝑀 ) = 𝐶 ∧ ∀ 𝑘 ∈ 𝑍 ( 𝑔 ‘ ( 𝑘 + 1 ) ) ∈ ( 𝑘 𝐹 ( 𝑔 ‘ 𝑘 ) ) ) ) |
17 |
12 16
|
vtoclg |
⊢ ( 𝐴 ∈ 𝑉 → ( ( 𝐶 ∈ 𝐴 ∧ 𝐹 : ( 𝑍 × 𝐴 ) ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) ) → ∃ 𝑔 ( 𝑔 : 𝑍 ⟶ 𝐴 ∧ ( 𝑔 ‘ 𝑀 ) = 𝐶 ∧ ∀ 𝑘 ∈ 𝑍 ( 𝑔 ‘ ( 𝑘 + 1 ) ) ∈ ( 𝑘 𝐹 ( 𝑔 ‘ 𝑘 ) ) ) ) ) |
18 |
17
|
3impib |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝐴 ∧ 𝐹 : ( 𝑍 × 𝐴 ) ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) ) → ∃ 𝑔 ( 𝑔 : 𝑍 ⟶ 𝐴 ∧ ( 𝑔 ‘ 𝑀 ) = 𝐶 ∧ ∀ 𝑘 ∈ 𝑍 ( 𝑔 ‘ ( 𝑘 + 1 ) ) ∈ ( 𝑘 𝐹 ( 𝑔 ‘ 𝑘 ) ) ) ) |