Step |
Hyp |
Ref |
Expression |
1 |
|
axdc4uz.1 |
⊢ 𝑀 ∈ ℤ |
2 |
|
axdc4uz.2 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
3 |
|
axdc4uz.3 |
⊢ 𝐴 ∈ V |
4 |
|
axdc4uz.4 |
⊢ 𝐺 = ( rec ( ( 𝑦 ∈ V ↦ ( 𝑦 + 1 ) ) , 𝑀 ) ↾ ω ) |
5 |
|
axdc4uz.5 |
⊢ 𝐻 = ( 𝑛 ∈ ω , 𝑥 ∈ 𝐴 ↦ ( ( 𝐺 ‘ 𝑛 ) 𝐹 𝑥 ) ) |
6 |
1 4
|
om2uzf1oi |
⊢ 𝐺 : ω –1-1-onto→ ( ℤ≥ ‘ 𝑀 ) |
7 |
|
f1oeq3 |
⊢ ( 𝑍 = ( ℤ≥ ‘ 𝑀 ) → ( 𝐺 : ω –1-1-onto→ 𝑍 ↔ 𝐺 : ω –1-1-onto→ ( ℤ≥ ‘ 𝑀 ) ) ) |
8 |
2 7
|
ax-mp |
⊢ ( 𝐺 : ω –1-1-onto→ 𝑍 ↔ 𝐺 : ω –1-1-onto→ ( ℤ≥ ‘ 𝑀 ) ) |
9 |
6 8
|
mpbir |
⊢ 𝐺 : ω –1-1-onto→ 𝑍 |
10 |
|
f1of |
⊢ ( 𝐺 : ω –1-1-onto→ 𝑍 → 𝐺 : ω ⟶ 𝑍 ) |
11 |
9 10
|
ax-mp |
⊢ 𝐺 : ω ⟶ 𝑍 |
12 |
11
|
ffvelrni |
⊢ ( 𝑛 ∈ ω → ( 𝐺 ‘ 𝑛 ) ∈ 𝑍 ) |
13 |
|
fovrn |
⊢ ( ( 𝐹 : ( 𝑍 × 𝐴 ) ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) ∧ ( 𝐺 ‘ 𝑛 ) ∈ 𝑍 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐺 ‘ 𝑛 ) 𝐹 𝑥 ) ∈ ( 𝒫 𝐴 ∖ { ∅ } ) ) |
14 |
12 13
|
syl3an2 |
⊢ ( ( 𝐹 : ( 𝑍 × 𝐴 ) ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) ∧ 𝑛 ∈ ω ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐺 ‘ 𝑛 ) 𝐹 𝑥 ) ∈ ( 𝒫 𝐴 ∖ { ∅ } ) ) |
15 |
14
|
3expb |
⊢ ( ( 𝐹 : ( 𝑍 × 𝐴 ) ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) ∧ ( 𝑛 ∈ ω ∧ 𝑥 ∈ 𝐴 ) ) → ( ( 𝐺 ‘ 𝑛 ) 𝐹 𝑥 ) ∈ ( 𝒫 𝐴 ∖ { ∅ } ) ) |
16 |
15
|
ralrimivva |
⊢ ( 𝐹 : ( 𝑍 × 𝐴 ) ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) → ∀ 𝑛 ∈ ω ∀ 𝑥 ∈ 𝐴 ( ( 𝐺 ‘ 𝑛 ) 𝐹 𝑥 ) ∈ ( 𝒫 𝐴 ∖ { ∅ } ) ) |
17 |
5
|
fmpo |
⊢ ( ∀ 𝑛 ∈ ω ∀ 𝑥 ∈ 𝐴 ( ( 𝐺 ‘ 𝑛 ) 𝐹 𝑥 ) ∈ ( 𝒫 𝐴 ∖ { ∅ } ) ↔ 𝐻 : ( ω × 𝐴 ) ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) ) |
18 |
16 17
|
sylib |
⊢ ( 𝐹 : ( 𝑍 × 𝐴 ) ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) → 𝐻 : ( ω × 𝐴 ) ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) ) |
19 |
3
|
axdc4 |
⊢ ( ( 𝐶 ∈ 𝐴 ∧ 𝐻 : ( ω × 𝐴 ) ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) ) → ∃ 𝑓 ( 𝑓 : ω ⟶ 𝐴 ∧ ( 𝑓 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑚 ∈ ω ( 𝑓 ‘ suc 𝑚 ) ∈ ( 𝑚 𝐻 ( 𝑓 ‘ 𝑚 ) ) ) ) |
20 |
18 19
|
sylan2 |
⊢ ( ( 𝐶 ∈ 𝐴 ∧ 𝐹 : ( 𝑍 × 𝐴 ) ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) ) → ∃ 𝑓 ( 𝑓 : ω ⟶ 𝐴 ∧ ( 𝑓 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑚 ∈ ω ( 𝑓 ‘ suc 𝑚 ) ∈ ( 𝑚 𝐻 ( 𝑓 ‘ 𝑚 ) ) ) ) |
21 |
|
f1ocnv |
⊢ ( 𝐺 : ω –1-1-onto→ 𝑍 → ◡ 𝐺 : 𝑍 –1-1-onto→ ω ) |
22 |
|
f1of |
⊢ ( ◡ 𝐺 : 𝑍 –1-1-onto→ ω → ◡ 𝐺 : 𝑍 ⟶ ω ) |
23 |
9 21 22
|
mp2b |
⊢ ◡ 𝐺 : 𝑍 ⟶ ω |
24 |
|
fco |
⊢ ( ( 𝑓 : ω ⟶ 𝐴 ∧ ◡ 𝐺 : 𝑍 ⟶ ω ) → ( 𝑓 ∘ ◡ 𝐺 ) : 𝑍 ⟶ 𝐴 ) |
25 |
23 24
|
mpan2 |
⊢ ( 𝑓 : ω ⟶ 𝐴 → ( 𝑓 ∘ ◡ 𝐺 ) : 𝑍 ⟶ 𝐴 ) |
26 |
25
|
3ad2ant1 |
⊢ ( ( 𝑓 : ω ⟶ 𝐴 ∧ ( 𝑓 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑚 ∈ ω ( 𝑓 ‘ suc 𝑚 ) ∈ ( 𝑚 𝐻 ( 𝑓 ‘ 𝑚 ) ) ) → ( 𝑓 ∘ ◡ 𝐺 ) : 𝑍 ⟶ 𝐴 ) |
27 |
|
uzid |
⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
28 |
1 27
|
ax-mp |
⊢ 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) |
29 |
28 2
|
eleqtrri |
⊢ 𝑀 ∈ 𝑍 |
30 |
|
fvco3 |
⊢ ( ( ◡ 𝐺 : 𝑍 ⟶ ω ∧ 𝑀 ∈ 𝑍 ) → ( ( 𝑓 ∘ ◡ 𝐺 ) ‘ 𝑀 ) = ( 𝑓 ‘ ( ◡ 𝐺 ‘ 𝑀 ) ) ) |
31 |
23 29 30
|
mp2an |
⊢ ( ( 𝑓 ∘ ◡ 𝐺 ) ‘ 𝑀 ) = ( 𝑓 ‘ ( ◡ 𝐺 ‘ 𝑀 ) ) |
32 |
1 4
|
om2uz0i |
⊢ ( 𝐺 ‘ ∅ ) = 𝑀 |
33 |
|
peano1 |
⊢ ∅ ∈ ω |
34 |
|
f1ocnvfv |
⊢ ( ( 𝐺 : ω –1-1-onto→ 𝑍 ∧ ∅ ∈ ω ) → ( ( 𝐺 ‘ ∅ ) = 𝑀 → ( ◡ 𝐺 ‘ 𝑀 ) = ∅ ) ) |
35 |
9 33 34
|
mp2an |
⊢ ( ( 𝐺 ‘ ∅ ) = 𝑀 → ( ◡ 𝐺 ‘ 𝑀 ) = ∅ ) |
36 |
32 35
|
ax-mp |
⊢ ( ◡ 𝐺 ‘ 𝑀 ) = ∅ |
37 |
36
|
fveq2i |
⊢ ( 𝑓 ‘ ( ◡ 𝐺 ‘ 𝑀 ) ) = ( 𝑓 ‘ ∅ ) |
38 |
31 37
|
eqtri |
⊢ ( ( 𝑓 ∘ ◡ 𝐺 ) ‘ 𝑀 ) = ( 𝑓 ‘ ∅ ) |
39 |
|
simp2 |
⊢ ( ( 𝑓 : ω ⟶ 𝐴 ∧ ( 𝑓 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑚 ∈ ω ( 𝑓 ‘ suc 𝑚 ) ∈ ( 𝑚 𝐻 ( 𝑓 ‘ 𝑚 ) ) ) → ( 𝑓 ‘ ∅ ) = 𝐶 ) |
40 |
38 39
|
eqtrid |
⊢ ( ( 𝑓 : ω ⟶ 𝐴 ∧ ( 𝑓 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑚 ∈ ω ( 𝑓 ‘ suc 𝑚 ) ∈ ( 𝑚 𝐻 ( 𝑓 ‘ 𝑚 ) ) ) → ( ( 𝑓 ∘ ◡ 𝐺 ) ‘ 𝑀 ) = 𝐶 ) |
41 |
23
|
ffvelrni |
⊢ ( 𝑘 ∈ 𝑍 → ( ◡ 𝐺 ‘ 𝑘 ) ∈ ω ) |
42 |
41
|
adantl |
⊢ ( ( 𝑓 : ω ⟶ 𝐴 ∧ 𝑘 ∈ 𝑍 ) → ( ◡ 𝐺 ‘ 𝑘 ) ∈ ω ) |
43 |
|
suceq |
⊢ ( 𝑚 = ( ◡ 𝐺 ‘ 𝑘 ) → suc 𝑚 = suc ( ◡ 𝐺 ‘ 𝑘 ) ) |
44 |
43
|
fveq2d |
⊢ ( 𝑚 = ( ◡ 𝐺 ‘ 𝑘 ) → ( 𝑓 ‘ suc 𝑚 ) = ( 𝑓 ‘ suc ( ◡ 𝐺 ‘ 𝑘 ) ) ) |
45 |
|
id |
⊢ ( 𝑚 = ( ◡ 𝐺 ‘ 𝑘 ) → 𝑚 = ( ◡ 𝐺 ‘ 𝑘 ) ) |
46 |
|
fveq2 |
⊢ ( 𝑚 = ( ◡ 𝐺 ‘ 𝑘 ) → ( 𝑓 ‘ 𝑚 ) = ( 𝑓 ‘ ( ◡ 𝐺 ‘ 𝑘 ) ) ) |
47 |
45 46
|
oveq12d |
⊢ ( 𝑚 = ( ◡ 𝐺 ‘ 𝑘 ) → ( 𝑚 𝐻 ( 𝑓 ‘ 𝑚 ) ) = ( ( ◡ 𝐺 ‘ 𝑘 ) 𝐻 ( 𝑓 ‘ ( ◡ 𝐺 ‘ 𝑘 ) ) ) ) |
48 |
44 47
|
eleq12d |
⊢ ( 𝑚 = ( ◡ 𝐺 ‘ 𝑘 ) → ( ( 𝑓 ‘ suc 𝑚 ) ∈ ( 𝑚 𝐻 ( 𝑓 ‘ 𝑚 ) ) ↔ ( 𝑓 ‘ suc ( ◡ 𝐺 ‘ 𝑘 ) ) ∈ ( ( ◡ 𝐺 ‘ 𝑘 ) 𝐻 ( 𝑓 ‘ ( ◡ 𝐺 ‘ 𝑘 ) ) ) ) ) |
49 |
48
|
rspcv |
⊢ ( ( ◡ 𝐺 ‘ 𝑘 ) ∈ ω → ( ∀ 𝑚 ∈ ω ( 𝑓 ‘ suc 𝑚 ) ∈ ( 𝑚 𝐻 ( 𝑓 ‘ 𝑚 ) ) → ( 𝑓 ‘ suc ( ◡ 𝐺 ‘ 𝑘 ) ) ∈ ( ( ◡ 𝐺 ‘ 𝑘 ) 𝐻 ( 𝑓 ‘ ( ◡ 𝐺 ‘ 𝑘 ) ) ) ) ) |
50 |
42 49
|
syl |
⊢ ( ( 𝑓 : ω ⟶ 𝐴 ∧ 𝑘 ∈ 𝑍 ) → ( ∀ 𝑚 ∈ ω ( 𝑓 ‘ suc 𝑚 ) ∈ ( 𝑚 𝐻 ( 𝑓 ‘ 𝑚 ) ) → ( 𝑓 ‘ suc ( ◡ 𝐺 ‘ 𝑘 ) ) ∈ ( ( ◡ 𝐺 ‘ 𝑘 ) 𝐻 ( 𝑓 ‘ ( ◡ 𝐺 ‘ 𝑘 ) ) ) ) ) |
51 |
2
|
peano2uzs |
⊢ ( 𝑘 ∈ 𝑍 → ( 𝑘 + 1 ) ∈ 𝑍 ) |
52 |
|
fvco3 |
⊢ ( ( ◡ 𝐺 : 𝑍 ⟶ ω ∧ ( 𝑘 + 1 ) ∈ 𝑍 ) → ( ( 𝑓 ∘ ◡ 𝐺 ) ‘ ( 𝑘 + 1 ) ) = ( 𝑓 ‘ ( ◡ 𝐺 ‘ ( 𝑘 + 1 ) ) ) ) |
53 |
23 51 52
|
sylancr |
⊢ ( 𝑘 ∈ 𝑍 → ( ( 𝑓 ∘ ◡ 𝐺 ) ‘ ( 𝑘 + 1 ) ) = ( 𝑓 ‘ ( ◡ 𝐺 ‘ ( 𝑘 + 1 ) ) ) ) |
54 |
1 4
|
om2uzsuci |
⊢ ( ( ◡ 𝐺 ‘ 𝑘 ) ∈ ω → ( 𝐺 ‘ suc ( ◡ 𝐺 ‘ 𝑘 ) ) = ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑘 ) ) + 1 ) ) |
55 |
41 54
|
syl |
⊢ ( 𝑘 ∈ 𝑍 → ( 𝐺 ‘ suc ( ◡ 𝐺 ‘ 𝑘 ) ) = ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑘 ) ) + 1 ) ) |
56 |
|
f1ocnvfv2 |
⊢ ( ( 𝐺 : ω –1-1-onto→ 𝑍 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑘 ) ) = 𝑘 ) |
57 |
9 56
|
mpan |
⊢ ( 𝑘 ∈ 𝑍 → ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑘 ) ) = 𝑘 ) |
58 |
57
|
oveq1d |
⊢ ( 𝑘 ∈ 𝑍 → ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑘 ) ) + 1 ) = ( 𝑘 + 1 ) ) |
59 |
55 58
|
eqtrd |
⊢ ( 𝑘 ∈ 𝑍 → ( 𝐺 ‘ suc ( ◡ 𝐺 ‘ 𝑘 ) ) = ( 𝑘 + 1 ) ) |
60 |
|
peano2 |
⊢ ( ( ◡ 𝐺 ‘ 𝑘 ) ∈ ω → suc ( ◡ 𝐺 ‘ 𝑘 ) ∈ ω ) |
61 |
41 60
|
syl |
⊢ ( 𝑘 ∈ 𝑍 → suc ( ◡ 𝐺 ‘ 𝑘 ) ∈ ω ) |
62 |
|
f1ocnvfv |
⊢ ( ( 𝐺 : ω –1-1-onto→ 𝑍 ∧ suc ( ◡ 𝐺 ‘ 𝑘 ) ∈ ω ) → ( ( 𝐺 ‘ suc ( ◡ 𝐺 ‘ 𝑘 ) ) = ( 𝑘 + 1 ) → ( ◡ 𝐺 ‘ ( 𝑘 + 1 ) ) = suc ( ◡ 𝐺 ‘ 𝑘 ) ) ) |
63 |
9 61 62
|
sylancr |
⊢ ( 𝑘 ∈ 𝑍 → ( ( 𝐺 ‘ suc ( ◡ 𝐺 ‘ 𝑘 ) ) = ( 𝑘 + 1 ) → ( ◡ 𝐺 ‘ ( 𝑘 + 1 ) ) = suc ( ◡ 𝐺 ‘ 𝑘 ) ) ) |
64 |
59 63
|
mpd |
⊢ ( 𝑘 ∈ 𝑍 → ( ◡ 𝐺 ‘ ( 𝑘 + 1 ) ) = suc ( ◡ 𝐺 ‘ 𝑘 ) ) |
65 |
64
|
fveq2d |
⊢ ( 𝑘 ∈ 𝑍 → ( 𝑓 ‘ ( ◡ 𝐺 ‘ ( 𝑘 + 1 ) ) ) = ( 𝑓 ‘ suc ( ◡ 𝐺 ‘ 𝑘 ) ) ) |
66 |
53 65
|
eqtr2d |
⊢ ( 𝑘 ∈ 𝑍 → ( 𝑓 ‘ suc ( ◡ 𝐺 ‘ 𝑘 ) ) = ( ( 𝑓 ∘ ◡ 𝐺 ) ‘ ( 𝑘 + 1 ) ) ) |
67 |
66
|
adantl |
⊢ ( ( 𝑓 : ω ⟶ 𝐴 ∧ 𝑘 ∈ 𝑍 ) → ( 𝑓 ‘ suc ( ◡ 𝐺 ‘ 𝑘 ) ) = ( ( 𝑓 ∘ ◡ 𝐺 ) ‘ ( 𝑘 + 1 ) ) ) |
68 |
|
ffvelrn |
⊢ ( ( 𝑓 : ω ⟶ 𝐴 ∧ ( ◡ 𝐺 ‘ 𝑘 ) ∈ ω ) → ( 𝑓 ‘ ( ◡ 𝐺 ‘ 𝑘 ) ) ∈ 𝐴 ) |
69 |
41 68
|
sylan2 |
⊢ ( ( 𝑓 : ω ⟶ 𝐴 ∧ 𝑘 ∈ 𝑍 ) → ( 𝑓 ‘ ( ◡ 𝐺 ‘ 𝑘 ) ) ∈ 𝐴 ) |
70 |
|
fveq2 |
⊢ ( 𝑛 = ( ◡ 𝐺 ‘ 𝑘 ) → ( 𝐺 ‘ 𝑛 ) = ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑘 ) ) ) |
71 |
70
|
oveq1d |
⊢ ( 𝑛 = ( ◡ 𝐺 ‘ 𝑘 ) → ( ( 𝐺 ‘ 𝑛 ) 𝐹 𝑥 ) = ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑘 ) ) 𝐹 𝑥 ) ) |
72 |
|
oveq2 |
⊢ ( 𝑥 = ( 𝑓 ‘ ( ◡ 𝐺 ‘ 𝑘 ) ) → ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑘 ) ) 𝐹 𝑥 ) = ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑘 ) ) 𝐹 ( 𝑓 ‘ ( ◡ 𝐺 ‘ 𝑘 ) ) ) ) |
73 |
|
ovex |
⊢ ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑘 ) ) 𝐹 ( 𝑓 ‘ ( ◡ 𝐺 ‘ 𝑘 ) ) ) ∈ V |
74 |
71 72 5 73
|
ovmpo |
⊢ ( ( ( ◡ 𝐺 ‘ 𝑘 ) ∈ ω ∧ ( 𝑓 ‘ ( ◡ 𝐺 ‘ 𝑘 ) ) ∈ 𝐴 ) → ( ( ◡ 𝐺 ‘ 𝑘 ) 𝐻 ( 𝑓 ‘ ( ◡ 𝐺 ‘ 𝑘 ) ) ) = ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑘 ) ) 𝐹 ( 𝑓 ‘ ( ◡ 𝐺 ‘ 𝑘 ) ) ) ) |
75 |
42 69 74
|
syl2anc |
⊢ ( ( 𝑓 : ω ⟶ 𝐴 ∧ 𝑘 ∈ 𝑍 ) → ( ( ◡ 𝐺 ‘ 𝑘 ) 𝐻 ( 𝑓 ‘ ( ◡ 𝐺 ‘ 𝑘 ) ) ) = ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑘 ) ) 𝐹 ( 𝑓 ‘ ( ◡ 𝐺 ‘ 𝑘 ) ) ) ) |
76 |
|
fvco3 |
⊢ ( ( ◡ 𝐺 : 𝑍 ⟶ ω ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝑓 ∘ ◡ 𝐺 ) ‘ 𝑘 ) = ( 𝑓 ‘ ( ◡ 𝐺 ‘ 𝑘 ) ) ) |
77 |
23 76
|
mpan |
⊢ ( 𝑘 ∈ 𝑍 → ( ( 𝑓 ∘ ◡ 𝐺 ) ‘ 𝑘 ) = ( 𝑓 ‘ ( ◡ 𝐺 ‘ 𝑘 ) ) ) |
78 |
77
|
eqcomd |
⊢ ( 𝑘 ∈ 𝑍 → ( 𝑓 ‘ ( ◡ 𝐺 ‘ 𝑘 ) ) = ( ( 𝑓 ∘ ◡ 𝐺 ) ‘ 𝑘 ) ) |
79 |
57 78
|
oveq12d |
⊢ ( 𝑘 ∈ 𝑍 → ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑘 ) ) 𝐹 ( 𝑓 ‘ ( ◡ 𝐺 ‘ 𝑘 ) ) ) = ( 𝑘 𝐹 ( ( 𝑓 ∘ ◡ 𝐺 ) ‘ 𝑘 ) ) ) |
80 |
79
|
adantl |
⊢ ( ( 𝑓 : ω ⟶ 𝐴 ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑘 ) ) 𝐹 ( 𝑓 ‘ ( ◡ 𝐺 ‘ 𝑘 ) ) ) = ( 𝑘 𝐹 ( ( 𝑓 ∘ ◡ 𝐺 ) ‘ 𝑘 ) ) ) |
81 |
75 80
|
eqtrd |
⊢ ( ( 𝑓 : ω ⟶ 𝐴 ∧ 𝑘 ∈ 𝑍 ) → ( ( ◡ 𝐺 ‘ 𝑘 ) 𝐻 ( 𝑓 ‘ ( ◡ 𝐺 ‘ 𝑘 ) ) ) = ( 𝑘 𝐹 ( ( 𝑓 ∘ ◡ 𝐺 ) ‘ 𝑘 ) ) ) |
82 |
67 81
|
eleq12d |
⊢ ( ( 𝑓 : ω ⟶ 𝐴 ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝑓 ‘ suc ( ◡ 𝐺 ‘ 𝑘 ) ) ∈ ( ( ◡ 𝐺 ‘ 𝑘 ) 𝐻 ( 𝑓 ‘ ( ◡ 𝐺 ‘ 𝑘 ) ) ) ↔ ( ( 𝑓 ∘ ◡ 𝐺 ) ‘ ( 𝑘 + 1 ) ) ∈ ( 𝑘 𝐹 ( ( 𝑓 ∘ ◡ 𝐺 ) ‘ 𝑘 ) ) ) ) |
83 |
50 82
|
sylibd |
⊢ ( ( 𝑓 : ω ⟶ 𝐴 ∧ 𝑘 ∈ 𝑍 ) → ( ∀ 𝑚 ∈ ω ( 𝑓 ‘ suc 𝑚 ) ∈ ( 𝑚 𝐻 ( 𝑓 ‘ 𝑚 ) ) → ( ( 𝑓 ∘ ◡ 𝐺 ) ‘ ( 𝑘 + 1 ) ) ∈ ( 𝑘 𝐹 ( ( 𝑓 ∘ ◡ 𝐺 ) ‘ 𝑘 ) ) ) ) |
84 |
83
|
impancom |
⊢ ( ( 𝑓 : ω ⟶ 𝐴 ∧ ∀ 𝑚 ∈ ω ( 𝑓 ‘ suc 𝑚 ) ∈ ( 𝑚 𝐻 ( 𝑓 ‘ 𝑚 ) ) ) → ( 𝑘 ∈ 𝑍 → ( ( 𝑓 ∘ ◡ 𝐺 ) ‘ ( 𝑘 + 1 ) ) ∈ ( 𝑘 𝐹 ( ( 𝑓 ∘ ◡ 𝐺 ) ‘ 𝑘 ) ) ) ) |
85 |
84
|
ralrimiv |
⊢ ( ( 𝑓 : ω ⟶ 𝐴 ∧ ∀ 𝑚 ∈ ω ( 𝑓 ‘ suc 𝑚 ) ∈ ( 𝑚 𝐻 ( 𝑓 ‘ 𝑚 ) ) ) → ∀ 𝑘 ∈ 𝑍 ( ( 𝑓 ∘ ◡ 𝐺 ) ‘ ( 𝑘 + 1 ) ) ∈ ( 𝑘 𝐹 ( ( 𝑓 ∘ ◡ 𝐺 ) ‘ 𝑘 ) ) ) |
86 |
85
|
3adant2 |
⊢ ( ( 𝑓 : ω ⟶ 𝐴 ∧ ( 𝑓 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑚 ∈ ω ( 𝑓 ‘ suc 𝑚 ) ∈ ( 𝑚 𝐻 ( 𝑓 ‘ 𝑚 ) ) ) → ∀ 𝑘 ∈ 𝑍 ( ( 𝑓 ∘ ◡ 𝐺 ) ‘ ( 𝑘 + 1 ) ) ∈ ( 𝑘 𝐹 ( ( 𝑓 ∘ ◡ 𝐺 ) ‘ 𝑘 ) ) ) |
87 |
|
vex |
⊢ 𝑓 ∈ V |
88 |
|
rdgfun |
⊢ Fun rec ( ( 𝑦 ∈ V ↦ ( 𝑦 + 1 ) ) , 𝑀 ) |
89 |
|
omex |
⊢ ω ∈ V |
90 |
|
resfunexg |
⊢ ( ( Fun rec ( ( 𝑦 ∈ V ↦ ( 𝑦 + 1 ) ) , 𝑀 ) ∧ ω ∈ V ) → ( rec ( ( 𝑦 ∈ V ↦ ( 𝑦 + 1 ) ) , 𝑀 ) ↾ ω ) ∈ V ) |
91 |
88 89 90
|
mp2an |
⊢ ( rec ( ( 𝑦 ∈ V ↦ ( 𝑦 + 1 ) ) , 𝑀 ) ↾ ω ) ∈ V |
92 |
4 91
|
eqeltri |
⊢ 𝐺 ∈ V |
93 |
92
|
cnvex |
⊢ ◡ 𝐺 ∈ V |
94 |
87 93
|
coex |
⊢ ( 𝑓 ∘ ◡ 𝐺 ) ∈ V |
95 |
|
feq1 |
⊢ ( 𝑔 = ( 𝑓 ∘ ◡ 𝐺 ) → ( 𝑔 : 𝑍 ⟶ 𝐴 ↔ ( 𝑓 ∘ ◡ 𝐺 ) : 𝑍 ⟶ 𝐴 ) ) |
96 |
|
fveq1 |
⊢ ( 𝑔 = ( 𝑓 ∘ ◡ 𝐺 ) → ( 𝑔 ‘ 𝑀 ) = ( ( 𝑓 ∘ ◡ 𝐺 ) ‘ 𝑀 ) ) |
97 |
96
|
eqeq1d |
⊢ ( 𝑔 = ( 𝑓 ∘ ◡ 𝐺 ) → ( ( 𝑔 ‘ 𝑀 ) = 𝐶 ↔ ( ( 𝑓 ∘ ◡ 𝐺 ) ‘ 𝑀 ) = 𝐶 ) ) |
98 |
|
fveq1 |
⊢ ( 𝑔 = ( 𝑓 ∘ ◡ 𝐺 ) → ( 𝑔 ‘ ( 𝑘 + 1 ) ) = ( ( 𝑓 ∘ ◡ 𝐺 ) ‘ ( 𝑘 + 1 ) ) ) |
99 |
|
fveq1 |
⊢ ( 𝑔 = ( 𝑓 ∘ ◡ 𝐺 ) → ( 𝑔 ‘ 𝑘 ) = ( ( 𝑓 ∘ ◡ 𝐺 ) ‘ 𝑘 ) ) |
100 |
99
|
oveq2d |
⊢ ( 𝑔 = ( 𝑓 ∘ ◡ 𝐺 ) → ( 𝑘 𝐹 ( 𝑔 ‘ 𝑘 ) ) = ( 𝑘 𝐹 ( ( 𝑓 ∘ ◡ 𝐺 ) ‘ 𝑘 ) ) ) |
101 |
98 100
|
eleq12d |
⊢ ( 𝑔 = ( 𝑓 ∘ ◡ 𝐺 ) → ( ( 𝑔 ‘ ( 𝑘 + 1 ) ) ∈ ( 𝑘 𝐹 ( 𝑔 ‘ 𝑘 ) ) ↔ ( ( 𝑓 ∘ ◡ 𝐺 ) ‘ ( 𝑘 + 1 ) ) ∈ ( 𝑘 𝐹 ( ( 𝑓 ∘ ◡ 𝐺 ) ‘ 𝑘 ) ) ) ) |
102 |
101
|
ralbidv |
⊢ ( 𝑔 = ( 𝑓 ∘ ◡ 𝐺 ) → ( ∀ 𝑘 ∈ 𝑍 ( 𝑔 ‘ ( 𝑘 + 1 ) ) ∈ ( 𝑘 𝐹 ( 𝑔 ‘ 𝑘 ) ) ↔ ∀ 𝑘 ∈ 𝑍 ( ( 𝑓 ∘ ◡ 𝐺 ) ‘ ( 𝑘 + 1 ) ) ∈ ( 𝑘 𝐹 ( ( 𝑓 ∘ ◡ 𝐺 ) ‘ 𝑘 ) ) ) ) |
103 |
95 97 102
|
3anbi123d |
⊢ ( 𝑔 = ( 𝑓 ∘ ◡ 𝐺 ) → ( ( 𝑔 : 𝑍 ⟶ 𝐴 ∧ ( 𝑔 ‘ 𝑀 ) = 𝐶 ∧ ∀ 𝑘 ∈ 𝑍 ( 𝑔 ‘ ( 𝑘 + 1 ) ) ∈ ( 𝑘 𝐹 ( 𝑔 ‘ 𝑘 ) ) ) ↔ ( ( 𝑓 ∘ ◡ 𝐺 ) : 𝑍 ⟶ 𝐴 ∧ ( ( 𝑓 ∘ ◡ 𝐺 ) ‘ 𝑀 ) = 𝐶 ∧ ∀ 𝑘 ∈ 𝑍 ( ( 𝑓 ∘ ◡ 𝐺 ) ‘ ( 𝑘 + 1 ) ) ∈ ( 𝑘 𝐹 ( ( 𝑓 ∘ ◡ 𝐺 ) ‘ 𝑘 ) ) ) ) ) |
104 |
94 103
|
spcev |
⊢ ( ( ( 𝑓 ∘ ◡ 𝐺 ) : 𝑍 ⟶ 𝐴 ∧ ( ( 𝑓 ∘ ◡ 𝐺 ) ‘ 𝑀 ) = 𝐶 ∧ ∀ 𝑘 ∈ 𝑍 ( ( 𝑓 ∘ ◡ 𝐺 ) ‘ ( 𝑘 + 1 ) ) ∈ ( 𝑘 𝐹 ( ( 𝑓 ∘ ◡ 𝐺 ) ‘ 𝑘 ) ) ) → ∃ 𝑔 ( 𝑔 : 𝑍 ⟶ 𝐴 ∧ ( 𝑔 ‘ 𝑀 ) = 𝐶 ∧ ∀ 𝑘 ∈ 𝑍 ( 𝑔 ‘ ( 𝑘 + 1 ) ) ∈ ( 𝑘 𝐹 ( 𝑔 ‘ 𝑘 ) ) ) ) |
105 |
26 40 86 104
|
syl3anc |
⊢ ( ( 𝑓 : ω ⟶ 𝐴 ∧ ( 𝑓 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑚 ∈ ω ( 𝑓 ‘ suc 𝑚 ) ∈ ( 𝑚 𝐻 ( 𝑓 ‘ 𝑚 ) ) ) → ∃ 𝑔 ( 𝑔 : 𝑍 ⟶ 𝐴 ∧ ( 𝑔 ‘ 𝑀 ) = 𝐶 ∧ ∀ 𝑘 ∈ 𝑍 ( 𝑔 ‘ ( 𝑘 + 1 ) ) ∈ ( 𝑘 𝐹 ( 𝑔 ‘ 𝑘 ) ) ) ) |
106 |
105
|
exlimiv |
⊢ ( ∃ 𝑓 ( 𝑓 : ω ⟶ 𝐴 ∧ ( 𝑓 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑚 ∈ ω ( 𝑓 ‘ suc 𝑚 ) ∈ ( 𝑚 𝐻 ( 𝑓 ‘ 𝑚 ) ) ) → ∃ 𝑔 ( 𝑔 : 𝑍 ⟶ 𝐴 ∧ ( 𝑔 ‘ 𝑀 ) = 𝐶 ∧ ∀ 𝑘 ∈ 𝑍 ( 𝑔 ‘ ( 𝑘 + 1 ) ) ∈ ( 𝑘 𝐹 ( 𝑔 ‘ 𝑘 ) ) ) ) |
107 |
20 106
|
syl |
⊢ ( ( 𝐶 ∈ 𝐴 ∧ 𝐹 : ( 𝑍 × 𝐴 ) ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) ) → ∃ 𝑔 ( 𝑔 : 𝑍 ⟶ 𝐴 ∧ ( 𝑔 ‘ 𝑀 ) = 𝐶 ∧ ∀ 𝑘 ∈ 𝑍 ( 𝑔 ‘ ( 𝑘 + 1 ) ) ∈ ( 𝑘 𝐹 ( 𝑔 ‘ 𝑘 ) ) ) ) |