Step |
Hyp |
Ref |
Expression |
1 |
|
axdclem2.1 |
⊢ 𝐹 = ( rec ( ( 𝑦 ∈ V ↦ ( 𝑔 ‘ { 𝑧 ∣ 𝑦 𝑥 𝑧 } ) ) , 𝑠 ) ↾ ω ) |
2 |
|
frfnom |
⊢ ( rec ( ( 𝑦 ∈ V ↦ ( 𝑔 ‘ { 𝑧 ∣ 𝑦 𝑥 𝑧 } ) ) , 𝑠 ) ↾ ω ) Fn ω |
3 |
1
|
fneq1i |
⊢ ( 𝐹 Fn ω ↔ ( rec ( ( 𝑦 ∈ V ↦ ( 𝑔 ‘ { 𝑧 ∣ 𝑦 𝑥 𝑧 } ) ) , 𝑠 ) ↾ ω ) Fn ω ) |
4 |
2 3
|
mpbir |
⊢ 𝐹 Fn ω |
5 |
4
|
a1i |
⊢ ( ( ∀ 𝑦 ∈ 𝒫 dom 𝑥 ( 𝑦 ≠ ∅ → ( 𝑔 ‘ 𝑦 ) ∈ 𝑦 ) ∧ ∃ 𝑧 𝑠 𝑥 𝑧 ∧ ran 𝑥 ⊆ dom 𝑥 ) → 𝐹 Fn ω ) |
6 |
|
omex |
⊢ ω ∈ V |
7 |
6
|
a1i |
⊢ ( ( ∀ 𝑦 ∈ 𝒫 dom 𝑥 ( 𝑦 ≠ ∅ → ( 𝑔 ‘ 𝑦 ) ∈ 𝑦 ) ∧ ∃ 𝑧 𝑠 𝑥 𝑧 ∧ ran 𝑥 ⊆ dom 𝑥 ) → ω ∈ V ) |
8 |
5 7
|
fnexd |
⊢ ( ( ∀ 𝑦 ∈ 𝒫 dom 𝑥 ( 𝑦 ≠ ∅ → ( 𝑔 ‘ 𝑦 ) ∈ 𝑦 ) ∧ ∃ 𝑧 𝑠 𝑥 𝑧 ∧ ran 𝑥 ⊆ dom 𝑥 ) → 𝐹 ∈ V ) |
9 |
|
fveq2 |
⊢ ( 𝑛 = ∅ → ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ ∅ ) ) |
10 |
|
suceq |
⊢ ( 𝑛 = ∅ → suc 𝑛 = suc ∅ ) |
11 |
10
|
fveq2d |
⊢ ( 𝑛 = ∅ → ( 𝐹 ‘ suc 𝑛 ) = ( 𝐹 ‘ suc ∅ ) ) |
12 |
9 11
|
breq12d |
⊢ ( 𝑛 = ∅ → ( ( 𝐹 ‘ 𝑛 ) 𝑥 ( 𝐹 ‘ suc 𝑛 ) ↔ ( 𝐹 ‘ ∅ ) 𝑥 ( 𝐹 ‘ suc ∅ ) ) ) |
13 |
|
fveq2 |
⊢ ( 𝑛 = 𝑘 → ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑘 ) ) |
14 |
|
suceq |
⊢ ( 𝑛 = 𝑘 → suc 𝑛 = suc 𝑘 ) |
15 |
14
|
fveq2d |
⊢ ( 𝑛 = 𝑘 → ( 𝐹 ‘ suc 𝑛 ) = ( 𝐹 ‘ suc 𝑘 ) ) |
16 |
13 15
|
breq12d |
⊢ ( 𝑛 = 𝑘 → ( ( 𝐹 ‘ 𝑛 ) 𝑥 ( 𝐹 ‘ suc 𝑛 ) ↔ ( 𝐹 ‘ 𝑘 ) 𝑥 ( 𝐹 ‘ suc 𝑘 ) ) ) |
17 |
|
fveq2 |
⊢ ( 𝑛 = suc 𝑘 → ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ suc 𝑘 ) ) |
18 |
|
suceq |
⊢ ( 𝑛 = suc 𝑘 → suc 𝑛 = suc suc 𝑘 ) |
19 |
18
|
fveq2d |
⊢ ( 𝑛 = suc 𝑘 → ( 𝐹 ‘ suc 𝑛 ) = ( 𝐹 ‘ suc suc 𝑘 ) ) |
20 |
17 19
|
breq12d |
⊢ ( 𝑛 = suc 𝑘 → ( ( 𝐹 ‘ 𝑛 ) 𝑥 ( 𝐹 ‘ suc 𝑛 ) ↔ ( 𝐹 ‘ suc 𝑘 ) 𝑥 ( 𝐹 ‘ suc suc 𝑘 ) ) ) |
21 |
1
|
fveq1i |
⊢ ( 𝐹 ‘ ∅ ) = ( ( rec ( ( 𝑦 ∈ V ↦ ( 𝑔 ‘ { 𝑧 ∣ 𝑦 𝑥 𝑧 } ) ) , 𝑠 ) ↾ ω ) ‘ ∅ ) |
22 |
|
fr0g |
⊢ ( 𝑠 ∈ V → ( ( rec ( ( 𝑦 ∈ V ↦ ( 𝑔 ‘ { 𝑧 ∣ 𝑦 𝑥 𝑧 } ) ) , 𝑠 ) ↾ ω ) ‘ ∅ ) = 𝑠 ) |
23 |
22
|
elv |
⊢ ( ( rec ( ( 𝑦 ∈ V ↦ ( 𝑔 ‘ { 𝑧 ∣ 𝑦 𝑥 𝑧 } ) ) , 𝑠 ) ↾ ω ) ‘ ∅ ) = 𝑠 |
24 |
21 23
|
eqtri |
⊢ ( 𝐹 ‘ ∅ ) = 𝑠 |
25 |
24
|
breq1i |
⊢ ( ( 𝐹 ‘ ∅ ) 𝑥 𝑧 ↔ 𝑠 𝑥 𝑧 ) |
26 |
25
|
biimpri |
⊢ ( 𝑠 𝑥 𝑧 → ( 𝐹 ‘ ∅ ) 𝑥 𝑧 ) |
27 |
26
|
eximi |
⊢ ( ∃ 𝑧 𝑠 𝑥 𝑧 → ∃ 𝑧 ( 𝐹 ‘ ∅ ) 𝑥 𝑧 ) |
28 |
|
peano1 |
⊢ ∅ ∈ ω |
29 |
1
|
axdclem |
⊢ ( ( ∀ 𝑦 ∈ 𝒫 dom 𝑥 ( 𝑦 ≠ ∅ → ( 𝑔 ‘ 𝑦 ) ∈ 𝑦 ) ∧ ran 𝑥 ⊆ dom 𝑥 ∧ ∃ 𝑧 ( 𝐹 ‘ ∅ ) 𝑥 𝑧 ) → ( ∅ ∈ ω → ( 𝐹 ‘ ∅ ) 𝑥 ( 𝐹 ‘ suc ∅ ) ) ) |
30 |
28 29
|
mpi |
⊢ ( ( ∀ 𝑦 ∈ 𝒫 dom 𝑥 ( 𝑦 ≠ ∅ → ( 𝑔 ‘ 𝑦 ) ∈ 𝑦 ) ∧ ran 𝑥 ⊆ dom 𝑥 ∧ ∃ 𝑧 ( 𝐹 ‘ ∅ ) 𝑥 𝑧 ) → ( 𝐹 ‘ ∅ ) 𝑥 ( 𝐹 ‘ suc ∅ ) ) |
31 |
27 30
|
syl3an3 |
⊢ ( ( ∀ 𝑦 ∈ 𝒫 dom 𝑥 ( 𝑦 ≠ ∅ → ( 𝑔 ‘ 𝑦 ) ∈ 𝑦 ) ∧ ran 𝑥 ⊆ dom 𝑥 ∧ ∃ 𝑧 𝑠 𝑥 𝑧 ) → ( 𝐹 ‘ ∅ ) 𝑥 ( 𝐹 ‘ suc ∅ ) ) |
32 |
31
|
3com23 |
⊢ ( ( ∀ 𝑦 ∈ 𝒫 dom 𝑥 ( 𝑦 ≠ ∅ → ( 𝑔 ‘ 𝑦 ) ∈ 𝑦 ) ∧ ∃ 𝑧 𝑠 𝑥 𝑧 ∧ ran 𝑥 ⊆ dom 𝑥 ) → ( 𝐹 ‘ ∅ ) 𝑥 ( 𝐹 ‘ suc ∅ ) ) |
33 |
|
fvex |
⊢ ( 𝐹 ‘ 𝑘 ) ∈ V |
34 |
|
fvex |
⊢ ( 𝐹 ‘ suc 𝑘 ) ∈ V |
35 |
33 34
|
brelrn |
⊢ ( ( 𝐹 ‘ 𝑘 ) 𝑥 ( 𝐹 ‘ suc 𝑘 ) → ( 𝐹 ‘ suc 𝑘 ) ∈ ran 𝑥 ) |
36 |
|
ssel |
⊢ ( ran 𝑥 ⊆ dom 𝑥 → ( ( 𝐹 ‘ suc 𝑘 ) ∈ ran 𝑥 → ( 𝐹 ‘ suc 𝑘 ) ∈ dom 𝑥 ) ) |
37 |
35 36
|
syl5 |
⊢ ( ran 𝑥 ⊆ dom 𝑥 → ( ( 𝐹 ‘ 𝑘 ) 𝑥 ( 𝐹 ‘ suc 𝑘 ) → ( 𝐹 ‘ suc 𝑘 ) ∈ dom 𝑥 ) ) |
38 |
34
|
eldm |
⊢ ( ( 𝐹 ‘ suc 𝑘 ) ∈ dom 𝑥 ↔ ∃ 𝑧 ( 𝐹 ‘ suc 𝑘 ) 𝑥 𝑧 ) |
39 |
37 38
|
syl6ib |
⊢ ( ran 𝑥 ⊆ dom 𝑥 → ( ( 𝐹 ‘ 𝑘 ) 𝑥 ( 𝐹 ‘ suc 𝑘 ) → ∃ 𝑧 ( 𝐹 ‘ suc 𝑘 ) 𝑥 𝑧 ) ) |
40 |
39
|
ad2antll |
⊢ ( ( 𝑘 ∈ ω ∧ ( ∀ 𝑦 ∈ 𝒫 dom 𝑥 ( 𝑦 ≠ ∅ → ( 𝑔 ‘ 𝑦 ) ∈ 𝑦 ) ∧ ran 𝑥 ⊆ dom 𝑥 ) ) → ( ( 𝐹 ‘ 𝑘 ) 𝑥 ( 𝐹 ‘ suc 𝑘 ) → ∃ 𝑧 ( 𝐹 ‘ suc 𝑘 ) 𝑥 𝑧 ) ) |
41 |
|
peano2 |
⊢ ( 𝑘 ∈ ω → suc 𝑘 ∈ ω ) |
42 |
1
|
axdclem |
⊢ ( ( ∀ 𝑦 ∈ 𝒫 dom 𝑥 ( 𝑦 ≠ ∅ → ( 𝑔 ‘ 𝑦 ) ∈ 𝑦 ) ∧ ran 𝑥 ⊆ dom 𝑥 ∧ ∃ 𝑧 ( 𝐹 ‘ suc 𝑘 ) 𝑥 𝑧 ) → ( suc 𝑘 ∈ ω → ( 𝐹 ‘ suc 𝑘 ) 𝑥 ( 𝐹 ‘ suc suc 𝑘 ) ) ) |
43 |
41 42
|
syl5 |
⊢ ( ( ∀ 𝑦 ∈ 𝒫 dom 𝑥 ( 𝑦 ≠ ∅ → ( 𝑔 ‘ 𝑦 ) ∈ 𝑦 ) ∧ ran 𝑥 ⊆ dom 𝑥 ∧ ∃ 𝑧 ( 𝐹 ‘ suc 𝑘 ) 𝑥 𝑧 ) → ( 𝑘 ∈ ω → ( 𝐹 ‘ suc 𝑘 ) 𝑥 ( 𝐹 ‘ suc suc 𝑘 ) ) ) |
44 |
43
|
3expia |
⊢ ( ( ∀ 𝑦 ∈ 𝒫 dom 𝑥 ( 𝑦 ≠ ∅ → ( 𝑔 ‘ 𝑦 ) ∈ 𝑦 ) ∧ ran 𝑥 ⊆ dom 𝑥 ) → ( ∃ 𝑧 ( 𝐹 ‘ suc 𝑘 ) 𝑥 𝑧 → ( 𝑘 ∈ ω → ( 𝐹 ‘ suc 𝑘 ) 𝑥 ( 𝐹 ‘ suc suc 𝑘 ) ) ) ) |
45 |
44
|
com3r |
⊢ ( 𝑘 ∈ ω → ( ( ∀ 𝑦 ∈ 𝒫 dom 𝑥 ( 𝑦 ≠ ∅ → ( 𝑔 ‘ 𝑦 ) ∈ 𝑦 ) ∧ ran 𝑥 ⊆ dom 𝑥 ) → ( ∃ 𝑧 ( 𝐹 ‘ suc 𝑘 ) 𝑥 𝑧 → ( 𝐹 ‘ suc 𝑘 ) 𝑥 ( 𝐹 ‘ suc suc 𝑘 ) ) ) ) |
46 |
45
|
imp |
⊢ ( ( 𝑘 ∈ ω ∧ ( ∀ 𝑦 ∈ 𝒫 dom 𝑥 ( 𝑦 ≠ ∅ → ( 𝑔 ‘ 𝑦 ) ∈ 𝑦 ) ∧ ran 𝑥 ⊆ dom 𝑥 ) ) → ( ∃ 𝑧 ( 𝐹 ‘ suc 𝑘 ) 𝑥 𝑧 → ( 𝐹 ‘ suc 𝑘 ) 𝑥 ( 𝐹 ‘ suc suc 𝑘 ) ) ) |
47 |
40 46
|
syld |
⊢ ( ( 𝑘 ∈ ω ∧ ( ∀ 𝑦 ∈ 𝒫 dom 𝑥 ( 𝑦 ≠ ∅ → ( 𝑔 ‘ 𝑦 ) ∈ 𝑦 ) ∧ ran 𝑥 ⊆ dom 𝑥 ) ) → ( ( 𝐹 ‘ 𝑘 ) 𝑥 ( 𝐹 ‘ suc 𝑘 ) → ( 𝐹 ‘ suc 𝑘 ) 𝑥 ( 𝐹 ‘ suc suc 𝑘 ) ) ) |
48 |
47
|
3adantr2 |
⊢ ( ( 𝑘 ∈ ω ∧ ( ∀ 𝑦 ∈ 𝒫 dom 𝑥 ( 𝑦 ≠ ∅ → ( 𝑔 ‘ 𝑦 ) ∈ 𝑦 ) ∧ ∃ 𝑧 𝑠 𝑥 𝑧 ∧ ran 𝑥 ⊆ dom 𝑥 ) ) → ( ( 𝐹 ‘ 𝑘 ) 𝑥 ( 𝐹 ‘ suc 𝑘 ) → ( 𝐹 ‘ suc 𝑘 ) 𝑥 ( 𝐹 ‘ suc suc 𝑘 ) ) ) |
49 |
48
|
ex |
⊢ ( 𝑘 ∈ ω → ( ( ∀ 𝑦 ∈ 𝒫 dom 𝑥 ( 𝑦 ≠ ∅ → ( 𝑔 ‘ 𝑦 ) ∈ 𝑦 ) ∧ ∃ 𝑧 𝑠 𝑥 𝑧 ∧ ran 𝑥 ⊆ dom 𝑥 ) → ( ( 𝐹 ‘ 𝑘 ) 𝑥 ( 𝐹 ‘ suc 𝑘 ) → ( 𝐹 ‘ suc 𝑘 ) 𝑥 ( 𝐹 ‘ suc suc 𝑘 ) ) ) ) |
50 |
12 16 20 32 49
|
finds2 |
⊢ ( 𝑛 ∈ ω → ( ( ∀ 𝑦 ∈ 𝒫 dom 𝑥 ( 𝑦 ≠ ∅ → ( 𝑔 ‘ 𝑦 ) ∈ 𝑦 ) ∧ ∃ 𝑧 𝑠 𝑥 𝑧 ∧ ran 𝑥 ⊆ dom 𝑥 ) → ( 𝐹 ‘ 𝑛 ) 𝑥 ( 𝐹 ‘ suc 𝑛 ) ) ) |
51 |
50
|
com12 |
⊢ ( ( ∀ 𝑦 ∈ 𝒫 dom 𝑥 ( 𝑦 ≠ ∅ → ( 𝑔 ‘ 𝑦 ) ∈ 𝑦 ) ∧ ∃ 𝑧 𝑠 𝑥 𝑧 ∧ ran 𝑥 ⊆ dom 𝑥 ) → ( 𝑛 ∈ ω → ( 𝐹 ‘ 𝑛 ) 𝑥 ( 𝐹 ‘ suc 𝑛 ) ) ) |
52 |
51
|
ralrimiv |
⊢ ( ( ∀ 𝑦 ∈ 𝒫 dom 𝑥 ( 𝑦 ≠ ∅ → ( 𝑔 ‘ 𝑦 ) ∈ 𝑦 ) ∧ ∃ 𝑧 𝑠 𝑥 𝑧 ∧ ran 𝑥 ⊆ dom 𝑥 ) → ∀ 𝑛 ∈ ω ( 𝐹 ‘ 𝑛 ) 𝑥 ( 𝐹 ‘ suc 𝑛 ) ) |
53 |
|
fveq1 |
⊢ ( 𝑓 = 𝐹 → ( 𝑓 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑛 ) ) |
54 |
|
fveq1 |
⊢ ( 𝑓 = 𝐹 → ( 𝑓 ‘ suc 𝑛 ) = ( 𝐹 ‘ suc 𝑛 ) ) |
55 |
53 54
|
breq12d |
⊢ ( 𝑓 = 𝐹 → ( ( 𝑓 ‘ 𝑛 ) 𝑥 ( 𝑓 ‘ suc 𝑛 ) ↔ ( 𝐹 ‘ 𝑛 ) 𝑥 ( 𝐹 ‘ suc 𝑛 ) ) ) |
56 |
55
|
ralbidv |
⊢ ( 𝑓 = 𝐹 → ( ∀ 𝑛 ∈ ω ( 𝑓 ‘ 𝑛 ) 𝑥 ( 𝑓 ‘ suc 𝑛 ) ↔ ∀ 𝑛 ∈ ω ( 𝐹 ‘ 𝑛 ) 𝑥 ( 𝐹 ‘ suc 𝑛 ) ) ) |
57 |
8 52 56
|
spcedv |
⊢ ( ( ∀ 𝑦 ∈ 𝒫 dom 𝑥 ( 𝑦 ≠ ∅ → ( 𝑔 ‘ 𝑦 ) ∈ 𝑦 ) ∧ ∃ 𝑧 𝑠 𝑥 𝑧 ∧ ran 𝑥 ⊆ dom 𝑥 ) → ∃ 𝑓 ∀ 𝑛 ∈ ω ( 𝑓 ‘ 𝑛 ) 𝑥 ( 𝑓 ‘ suc 𝑛 ) ) |
58 |
57
|
3exp |
⊢ ( ∀ 𝑦 ∈ 𝒫 dom 𝑥 ( 𝑦 ≠ ∅ → ( 𝑔 ‘ 𝑦 ) ∈ 𝑦 ) → ( ∃ 𝑧 𝑠 𝑥 𝑧 → ( ran 𝑥 ⊆ dom 𝑥 → ∃ 𝑓 ∀ 𝑛 ∈ ω ( 𝑓 ‘ 𝑛 ) 𝑥 ( 𝑓 ‘ suc 𝑛 ) ) ) ) |
59 |
|
vex |
⊢ 𝑥 ∈ V |
60 |
59
|
dmex |
⊢ dom 𝑥 ∈ V |
61 |
60
|
pwex |
⊢ 𝒫 dom 𝑥 ∈ V |
62 |
61
|
ac4c |
⊢ ∃ 𝑔 ∀ 𝑦 ∈ 𝒫 dom 𝑥 ( 𝑦 ≠ ∅ → ( 𝑔 ‘ 𝑦 ) ∈ 𝑦 ) |
63 |
58 62
|
exlimiiv |
⊢ ( ∃ 𝑧 𝑠 𝑥 𝑧 → ( ran 𝑥 ⊆ dom 𝑥 → ∃ 𝑓 ∀ 𝑛 ∈ ω ( 𝑓 ‘ 𝑛 ) 𝑥 ( 𝑓 ‘ suc 𝑛 ) ) ) |