Step |
Hyp |
Ref |
Expression |
1 |
|
dfcnqs |
⊢ ℂ = ( ( R × R ) / ◡ E ) |
2 |
|
addcnsrec |
⊢ ( ( ( 𝑧 ∈ R ∧ 𝑤 ∈ R ) ∧ ( 𝑣 ∈ R ∧ 𝑢 ∈ R ) ) → ( [ 〈 𝑧 , 𝑤 〉 ] ◡ E + [ 〈 𝑣 , 𝑢 〉 ] ◡ E ) = [ 〈 ( 𝑧 +R 𝑣 ) , ( 𝑤 +R 𝑢 ) 〉 ] ◡ E ) |
3 |
|
mulcnsrec |
⊢ ( ( ( 𝑥 ∈ R ∧ 𝑦 ∈ R ) ∧ ( ( 𝑧 +R 𝑣 ) ∈ R ∧ ( 𝑤 +R 𝑢 ) ∈ R ) ) → ( [ 〈 𝑥 , 𝑦 〉 ] ◡ E · [ 〈 ( 𝑧 +R 𝑣 ) , ( 𝑤 +R 𝑢 ) 〉 ] ◡ E ) = [ 〈 ( ( 𝑥 ·R ( 𝑧 +R 𝑣 ) ) +R ( -1R ·R ( 𝑦 ·R ( 𝑤 +R 𝑢 ) ) ) ) , ( ( 𝑦 ·R ( 𝑧 +R 𝑣 ) ) +R ( 𝑥 ·R ( 𝑤 +R 𝑢 ) ) ) 〉 ] ◡ E ) |
4 |
|
mulcnsrec |
⊢ ( ( ( 𝑥 ∈ R ∧ 𝑦 ∈ R ) ∧ ( 𝑧 ∈ R ∧ 𝑤 ∈ R ) ) → ( [ 〈 𝑥 , 𝑦 〉 ] ◡ E · [ 〈 𝑧 , 𝑤 〉 ] ◡ E ) = [ 〈 ( ( 𝑥 ·R 𝑧 ) +R ( -1R ·R ( 𝑦 ·R 𝑤 ) ) ) , ( ( 𝑦 ·R 𝑧 ) +R ( 𝑥 ·R 𝑤 ) ) 〉 ] ◡ E ) |
5 |
|
mulcnsrec |
⊢ ( ( ( 𝑥 ∈ R ∧ 𝑦 ∈ R ) ∧ ( 𝑣 ∈ R ∧ 𝑢 ∈ R ) ) → ( [ 〈 𝑥 , 𝑦 〉 ] ◡ E · [ 〈 𝑣 , 𝑢 〉 ] ◡ E ) = [ 〈 ( ( 𝑥 ·R 𝑣 ) +R ( -1R ·R ( 𝑦 ·R 𝑢 ) ) ) , ( ( 𝑦 ·R 𝑣 ) +R ( 𝑥 ·R 𝑢 ) ) 〉 ] ◡ E ) |
6 |
|
addcnsrec |
⊢ ( ( ( ( ( 𝑥 ·R 𝑧 ) +R ( -1R ·R ( 𝑦 ·R 𝑤 ) ) ) ∈ R ∧ ( ( 𝑦 ·R 𝑧 ) +R ( 𝑥 ·R 𝑤 ) ) ∈ R ) ∧ ( ( ( 𝑥 ·R 𝑣 ) +R ( -1R ·R ( 𝑦 ·R 𝑢 ) ) ) ∈ R ∧ ( ( 𝑦 ·R 𝑣 ) +R ( 𝑥 ·R 𝑢 ) ) ∈ R ) ) → ( [ 〈 ( ( 𝑥 ·R 𝑧 ) +R ( -1R ·R ( 𝑦 ·R 𝑤 ) ) ) , ( ( 𝑦 ·R 𝑧 ) +R ( 𝑥 ·R 𝑤 ) ) 〉 ] ◡ E + [ 〈 ( ( 𝑥 ·R 𝑣 ) +R ( -1R ·R ( 𝑦 ·R 𝑢 ) ) ) , ( ( 𝑦 ·R 𝑣 ) +R ( 𝑥 ·R 𝑢 ) ) 〉 ] ◡ E ) = [ 〈 ( ( ( 𝑥 ·R 𝑧 ) +R ( -1R ·R ( 𝑦 ·R 𝑤 ) ) ) +R ( ( 𝑥 ·R 𝑣 ) +R ( -1R ·R ( 𝑦 ·R 𝑢 ) ) ) ) , ( ( ( 𝑦 ·R 𝑧 ) +R ( 𝑥 ·R 𝑤 ) ) +R ( ( 𝑦 ·R 𝑣 ) +R ( 𝑥 ·R 𝑢 ) ) ) 〉 ] ◡ E ) |
7 |
|
addclsr |
⊢ ( ( 𝑧 ∈ R ∧ 𝑣 ∈ R ) → ( 𝑧 +R 𝑣 ) ∈ R ) |
8 |
|
addclsr |
⊢ ( ( 𝑤 ∈ R ∧ 𝑢 ∈ R ) → ( 𝑤 +R 𝑢 ) ∈ R ) |
9 |
7 8
|
anim12i |
⊢ ( ( ( 𝑧 ∈ R ∧ 𝑣 ∈ R ) ∧ ( 𝑤 ∈ R ∧ 𝑢 ∈ R ) ) → ( ( 𝑧 +R 𝑣 ) ∈ R ∧ ( 𝑤 +R 𝑢 ) ∈ R ) ) |
10 |
9
|
an4s |
⊢ ( ( ( 𝑧 ∈ R ∧ 𝑤 ∈ R ) ∧ ( 𝑣 ∈ R ∧ 𝑢 ∈ R ) ) → ( ( 𝑧 +R 𝑣 ) ∈ R ∧ ( 𝑤 +R 𝑢 ) ∈ R ) ) |
11 |
|
mulclsr |
⊢ ( ( 𝑥 ∈ R ∧ 𝑧 ∈ R ) → ( 𝑥 ·R 𝑧 ) ∈ R ) |
12 |
|
m1r |
⊢ -1R ∈ R |
13 |
|
mulclsr |
⊢ ( ( 𝑦 ∈ R ∧ 𝑤 ∈ R ) → ( 𝑦 ·R 𝑤 ) ∈ R ) |
14 |
|
mulclsr |
⊢ ( ( -1R ∈ R ∧ ( 𝑦 ·R 𝑤 ) ∈ R ) → ( -1R ·R ( 𝑦 ·R 𝑤 ) ) ∈ R ) |
15 |
12 13 14
|
sylancr |
⊢ ( ( 𝑦 ∈ R ∧ 𝑤 ∈ R ) → ( -1R ·R ( 𝑦 ·R 𝑤 ) ) ∈ R ) |
16 |
|
addclsr |
⊢ ( ( ( 𝑥 ·R 𝑧 ) ∈ R ∧ ( -1R ·R ( 𝑦 ·R 𝑤 ) ) ∈ R ) → ( ( 𝑥 ·R 𝑧 ) +R ( -1R ·R ( 𝑦 ·R 𝑤 ) ) ) ∈ R ) |
17 |
11 15 16
|
syl2an |
⊢ ( ( ( 𝑥 ∈ R ∧ 𝑧 ∈ R ) ∧ ( 𝑦 ∈ R ∧ 𝑤 ∈ R ) ) → ( ( 𝑥 ·R 𝑧 ) +R ( -1R ·R ( 𝑦 ·R 𝑤 ) ) ) ∈ R ) |
18 |
17
|
an4s |
⊢ ( ( ( 𝑥 ∈ R ∧ 𝑦 ∈ R ) ∧ ( 𝑧 ∈ R ∧ 𝑤 ∈ R ) ) → ( ( 𝑥 ·R 𝑧 ) +R ( -1R ·R ( 𝑦 ·R 𝑤 ) ) ) ∈ R ) |
19 |
|
mulclsr |
⊢ ( ( 𝑦 ∈ R ∧ 𝑧 ∈ R ) → ( 𝑦 ·R 𝑧 ) ∈ R ) |
20 |
|
mulclsr |
⊢ ( ( 𝑥 ∈ R ∧ 𝑤 ∈ R ) → ( 𝑥 ·R 𝑤 ) ∈ R ) |
21 |
|
addclsr |
⊢ ( ( ( 𝑦 ·R 𝑧 ) ∈ R ∧ ( 𝑥 ·R 𝑤 ) ∈ R ) → ( ( 𝑦 ·R 𝑧 ) +R ( 𝑥 ·R 𝑤 ) ) ∈ R ) |
22 |
19 20 21
|
syl2anr |
⊢ ( ( ( 𝑥 ∈ R ∧ 𝑤 ∈ R ) ∧ ( 𝑦 ∈ R ∧ 𝑧 ∈ R ) ) → ( ( 𝑦 ·R 𝑧 ) +R ( 𝑥 ·R 𝑤 ) ) ∈ R ) |
23 |
22
|
an42s |
⊢ ( ( ( 𝑥 ∈ R ∧ 𝑦 ∈ R ) ∧ ( 𝑧 ∈ R ∧ 𝑤 ∈ R ) ) → ( ( 𝑦 ·R 𝑧 ) +R ( 𝑥 ·R 𝑤 ) ) ∈ R ) |
24 |
18 23
|
jca |
⊢ ( ( ( 𝑥 ∈ R ∧ 𝑦 ∈ R ) ∧ ( 𝑧 ∈ R ∧ 𝑤 ∈ R ) ) → ( ( ( 𝑥 ·R 𝑧 ) +R ( -1R ·R ( 𝑦 ·R 𝑤 ) ) ) ∈ R ∧ ( ( 𝑦 ·R 𝑧 ) +R ( 𝑥 ·R 𝑤 ) ) ∈ R ) ) |
25 |
|
mulclsr |
⊢ ( ( 𝑥 ∈ R ∧ 𝑣 ∈ R ) → ( 𝑥 ·R 𝑣 ) ∈ R ) |
26 |
|
mulclsr |
⊢ ( ( 𝑦 ∈ R ∧ 𝑢 ∈ R ) → ( 𝑦 ·R 𝑢 ) ∈ R ) |
27 |
|
mulclsr |
⊢ ( ( -1R ∈ R ∧ ( 𝑦 ·R 𝑢 ) ∈ R ) → ( -1R ·R ( 𝑦 ·R 𝑢 ) ) ∈ R ) |
28 |
12 26 27
|
sylancr |
⊢ ( ( 𝑦 ∈ R ∧ 𝑢 ∈ R ) → ( -1R ·R ( 𝑦 ·R 𝑢 ) ) ∈ R ) |
29 |
|
addclsr |
⊢ ( ( ( 𝑥 ·R 𝑣 ) ∈ R ∧ ( -1R ·R ( 𝑦 ·R 𝑢 ) ) ∈ R ) → ( ( 𝑥 ·R 𝑣 ) +R ( -1R ·R ( 𝑦 ·R 𝑢 ) ) ) ∈ R ) |
30 |
25 28 29
|
syl2an |
⊢ ( ( ( 𝑥 ∈ R ∧ 𝑣 ∈ R ) ∧ ( 𝑦 ∈ R ∧ 𝑢 ∈ R ) ) → ( ( 𝑥 ·R 𝑣 ) +R ( -1R ·R ( 𝑦 ·R 𝑢 ) ) ) ∈ R ) |
31 |
30
|
an4s |
⊢ ( ( ( 𝑥 ∈ R ∧ 𝑦 ∈ R ) ∧ ( 𝑣 ∈ R ∧ 𝑢 ∈ R ) ) → ( ( 𝑥 ·R 𝑣 ) +R ( -1R ·R ( 𝑦 ·R 𝑢 ) ) ) ∈ R ) |
32 |
|
mulclsr |
⊢ ( ( 𝑦 ∈ R ∧ 𝑣 ∈ R ) → ( 𝑦 ·R 𝑣 ) ∈ R ) |
33 |
|
mulclsr |
⊢ ( ( 𝑥 ∈ R ∧ 𝑢 ∈ R ) → ( 𝑥 ·R 𝑢 ) ∈ R ) |
34 |
|
addclsr |
⊢ ( ( ( 𝑦 ·R 𝑣 ) ∈ R ∧ ( 𝑥 ·R 𝑢 ) ∈ R ) → ( ( 𝑦 ·R 𝑣 ) +R ( 𝑥 ·R 𝑢 ) ) ∈ R ) |
35 |
32 33 34
|
syl2anr |
⊢ ( ( ( 𝑥 ∈ R ∧ 𝑢 ∈ R ) ∧ ( 𝑦 ∈ R ∧ 𝑣 ∈ R ) ) → ( ( 𝑦 ·R 𝑣 ) +R ( 𝑥 ·R 𝑢 ) ) ∈ R ) |
36 |
35
|
an42s |
⊢ ( ( ( 𝑥 ∈ R ∧ 𝑦 ∈ R ) ∧ ( 𝑣 ∈ R ∧ 𝑢 ∈ R ) ) → ( ( 𝑦 ·R 𝑣 ) +R ( 𝑥 ·R 𝑢 ) ) ∈ R ) |
37 |
31 36
|
jca |
⊢ ( ( ( 𝑥 ∈ R ∧ 𝑦 ∈ R ) ∧ ( 𝑣 ∈ R ∧ 𝑢 ∈ R ) ) → ( ( ( 𝑥 ·R 𝑣 ) +R ( -1R ·R ( 𝑦 ·R 𝑢 ) ) ) ∈ R ∧ ( ( 𝑦 ·R 𝑣 ) +R ( 𝑥 ·R 𝑢 ) ) ∈ R ) ) |
38 |
|
distrsr |
⊢ ( 𝑥 ·R ( 𝑧 +R 𝑣 ) ) = ( ( 𝑥 ·R 𝑧 ) +R ( 𝑥 ·R 𝑣 ) ) |
39 |
|
distrsr |
⊢ ( 𝑦 ·R ( 𝑤 +R 𝑢 ) ) = ( ( 𝑦 ·R 𝑤 ) +R ( 𝑦 ·R 𝑢 ) ) |
40 |
39
|
oveq2i |
⊢ ( -1R ·R ( 𝑦 ·R ( 𝑤 +R 𝑢 ) ) ) = ( -1R ·R ( ( 𝑦 ·R 𝑤 ) +R ( 𝑦 ·R 𝑢 ) ) ) |
41 |
|
distrsr |
⊢ ( -1R ·R ( ( 𝑦 ·R 𝑤 ) +R ( 𝑦 ·R 𝑢 ) ) ) = ( ( -1R ·R ( 𝑦 ·R 𝑤 ) ) +R ( -1R ·R ( 𝑦 ·R 𝑢 ) ) ) |
42 |
40 41
|
eqtri |
⊢ ( -1R ·R ( 𝑦 ·R ( 𝑤 +R 𝑢 ) ) ) = ( ( -1R ·R ( 𝑦 ·R 𝑤 ) ) +R ( -1R ·R ( 𝑦 ·R 𝑢 ) ) ) |
43 |
38 42
|
oveq12i |
⊢ ( ( 𝑥 ·R ( 𝑧 +R 𝑣 ) ) +R ( -1R ·R ( 𝑦 ·R ( 𝑤 +R 𝑢 ) ) ) ) = ( ( ( 𝑥 ·R 𝑧 ) +R ( 𝑥 ·R 𝑣 ) ) +R ( ( -1R ·R ( 𝑦 ·R 𝑤 ) ) +R ( -1R ·R ( 𝑦 ·R 𝑢 ) ) ) ) |
44 |
|
ovex |
⊢ ( 𝑥 ·R 𝑧 ) ∈ V |
45 |
|
ovex |
⊢ ( 𝑥 ·R 𝑣 ) ∈ V |
46 |
|
ovex |
⊢ ( -1R ·R ( 𝑦 ·R 𝑤 ) ) ∈ V |
47 |
|
addcomsr |
⊢ ( 𝑓 +R 𝑔 ) = ( 𝑔 +R 𝑓 ) |
48 |
|
addasssr |
⊢ ( ( 𝑓 +R 𝑔 ) +R ℎ ) = ( 𝑓 +R ( 𝑔 +R ℎ ) ) |
49 |
|
ovex |
⊢ ( -1R ·R ( 𝑦 ·R 𝑢 ) ) ∈ V |
50 |
44 45 46 47 48 49
|
caov4 |
⊢ ( ( ( 𝑥 ·R 𝑧 ) +R ( 𝑥 ·R 𝑣 ) ) +R ( ( -1R ·R ( 𝑦 ·R 𝑤 ) ) +R ( -1R ·R ( 𝑦 ·R 𝑢 ) ) ) ) = ( ( ( 𝑥 ·R 𝑧 ) +R ( -1R ·R ( 𝑦 ·R 𝑤 ) ) ) +R ( ( 𝑥 ·R 𝑣 ) +R ( -1R ·R ( 𝑦 ·R 𝑢 ) ) ) ) |
51 |
43 50
|
eqtri |
⊢ ( ( 𝑥 ·R ( 𝑧 +R 𝑣 ) ) +R ( -1R ·R ( 𝑦 ·R ( 𝑤 +R 𝑢 ) ) ) ) = ( ( ( 𝑥 ·R 𝑧 ) +R ( -1R ·R ( 𝑦 ·R 𝑤 ) ) ) +R ( ( 𝑥 ·R 𝑣 ) +R ( -1R ·R ( 𝑦 ·R 𝑢 ) ) ) ) |
52 |
|
distrsr |
⊢ ( 𝑦 ·R ( 𝑧 +R 𝑣 ) ) = ( ( 𝑦 ·R 𝑧 ) +R ( 𝑦 ·R 𝑣 ) ) |
53 |
|
distrsr |
⊢ ( 𝑥 ·R ( 𝑤 +R 𝑢 ) ) = ( ( 𝑥 ·R 𝑤 ) +R ( 𝑥 ·R 𝑢 ) ) |
54 |
52 53
|
oveq12i |
⊢ ( ( 𝑦 ·R ( 𝑧 +R 𝑣 ) ) +R ( 𝑥 ·R ( 𝑤 +R 𝑢 ) ) ) = ( ( ( 𝑦 ·R 𝑧 ) +R ( 𝑦 ·R 𝑣 ) ) +R ( ( 𝑥 ·R 𝑤 ) +R ( 𝑥 ·R 𝑢 ) ) ) |
55 |
|
ovex |
⊢ ( 𝑦 ·R 𝑧 ) ∈ V |
56 |
|
ovex |
⊢ ( 𝑦 ·R 𝑣 ) ∈ V |
57 |
|
ovex |
⊢ ( 𝑥 ·R 𝑤 ) ∈ V |
58 |
|
ovex |
⊢ ( 𝑥 ·R 𝑢 ) ∈ V |
59 |
55 56 57 47 48 58
|
caov4 |
⊢ ( ( ( 𝑦 ·R 𝑧 ) +R ( 𝑦 ·R 𝑣 ) ) +R ( ( 𝑥 ·R 𝑤 ) +R ( 𝑥 ·R 𝑢 ) ) ) = ( ( ( 𝑦 ·R 𝑧 ) +R ( 𝑥 ·R 𝑤 ) ) +R ( ( 𝑦 ·R 𝑣 ) +R ( 𝑥 ·R 𝑢 ) ) ) |
60 |
54 59
|
eqtri |
⊢ ( ( 𝑦 ·R ( 𝑧 +R 𝑣 ) ) +R ( 𝑥 ·R ( 𝑤 +R 𝑢 ) ) ) = ( ( ( 𝑦 ·R 𝑧 ) +R ( 𝑥 ·R 𝑤 ) ) +R ( ( 𝑦 ·R 𝑣 ) +R ( 𝑥 ·R 𝑢 ) ) ) |
61 |
1 2 3 4 5 6 10 24 37 51 60
|
ecovdi |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 · ( 𝐵 + 𝐶 ) ) = ( ( 𝐴 · 𝐵 ) + ( 𝐴 · 𝐶 ) ) ) |