| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nfnae |
⊢ Ⅎ 𝑥 ¬ ∀ 𝑥 𝑥 = 𝑦 |
| 2 |
|
nfnae |
⊢ Ⅎ 𝑥 ¬ ∀ 𝑥 𝑥 = 𝑧 |
| 3 |
1 2
|
nfan |
⊢ Ⅎ 𝑥 ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) |
| 4 |
|
nfcvf |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑥 𝑦 ) |
| 5 |
4
|
adantr |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → Ⅎ 𝑥 𝑦 ) |
| 6 |
5
|
nfcrd |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → Ⅎ 𝑥 𝑤 ∈ 𝑦 ) |
| 7 |
|
nfcvf |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑧 → Ⅎ 𝑥 𝑧 ) |
| 8 |
7
|
adantl |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → Ⅎ 𝑥 𝑧 ) |
| 9 |
8
|
nfcrd |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → Ⅎ 𝑥 𝑤 ∈ 𝑧 ) |
| 10 |
6 9
|
nfbid |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → Ⅎ 𝑥 ( 𝑤 ∈ 𝑦 ↔ 𝑤 ∈ 𝑧 ) ) |
| 11 |
|
elequ1 |
⊢ ( 𝑤 = 𝑥 → ( 𝑤 ∈ 𝑦 ↔ 𝑥 ∈ 𝑦 ) ) |
| 12 |
|
elequ1 |
⊢ ( 𝑤 = 𝑥 → ( 𝑤 ∈ 𝑧 ↔ 𝑥 ∈ 𝑧 ) ) |
| 13 |
11 12
|
bibi12d |
⊢ ( 𝑤 = 𝑥 → ( ( 𝑤 ∈ 𝑦 ↔ 𝑤 ∈ 𝑧 ) ↔ ( 𝑥 ∈ 𝑦 ↔ 𝑥 ∈ 𝑧 ) ) ) |
| 14 |
13
|
a1i |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → ( 𝑤 = 𝑥 → ( ( 𝑤 ∈ 𝑦 ↔ 𝑤 ∈ 𝑧 ) ↔ ( 𝑥 ∈ 𝑦 ↔ 𝑥 ∈ 𝑧 ) ) ) ) |
| 15 |
3 10 14
|
cbvald |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → ( ∀ 𝑤 ( 𝑤 ∈ 𝑦 ↔ 𝑤 ∈ 𝑧 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝑦 ↔ 𝑥 ∈ 𝑧 ) ) ) |
| 16 |
|
axextg |
⊢ ( ∀ 𝑤 ( 𝑤 ∈ 𝑦 ↔ 𝑤 ∈ 𝑧 ) → 𝑦 = 𝑧 ) |
| 17 |
15 16
|
biimtrrdi |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → ( ∀ 𝑥 ( 𝑥 ∈ 𝑦 ↔ 𝑥 ∈ 𝑧 ) → 𝑦 = 𝑧 ) ) |
| 18 |
|
19.8a |
⊢ ( 𝑦 = 𝑧 → ∃ 𝑥 𝑦 = 𝑧 ) |
| 19 |
17 18
|
syl6 |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → ( ∀ 𝑥 ( 𝑥 ∈ 𝑦 ↔ 𝑥 ∈ 𝑧 ) → ∃ 𝑥 𝑦 = 𝑧 ) ) |
| 20 |
19
|
ex |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( ¬ ∀ 𝑥 𝑥 = 𝑧 → ( ∀ 𝑥 ( 𝑥 ∈ 𝑦 ↔ 𝑥 ∈ 𝑧 ) → ∃ 𝑥 𝑦 = 𝑧 ) ) ) |
| 21 |
|
ax6e |
⊢ ∃ 𝑥 𝑥 = 𝑧 |
| 22 |
|
ax7 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 = 𝑧 → 𝑦 = 𝑧 ) ) |
| 23 |
22
|
aleximi |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( ∃ 𝑥 𝑥 = 𝑧 → ∃ 𝑥 𝑦 = 𝑧 ) ) |
| 24 |
21 23
|
mpi |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ∃ 𝑥 𝑦 = 𝑧 ) |
| 25 |
24
|
a1d |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( ∀ 𝑥 ( 𝑥 ∈ 𝑦 ↔ 𝑥 ∈ 𝑧 ) → ∃ 𝑥 𝑦 = 𝑧 ) ) |
| 26 |
|
ax6e |
⊢ ∃ 𝑥 𝑥 = 𝑦 |
| 27 |
|
ax7 |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 = 𝑦 → 𝑧 = 𝑦 ) ) |
| 28 |
|
equcomi |
⊢ ( 𝑧 = 𝑦 → 𝑦 = 𝑧 ) |
| 29 |
27 28
|
syl6 |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 = 𝑦 → 𝑦 = 𝑧 ) ) |
| 30 |
29
|
aleximi |
⊢ ( ∀ 𝑥 𝑥 = 𝑧 → ( ∃ 𝑥 𝑥 = 𝑦 → ∃ 𝑥 𝑦 = 𝑧 ) ) |
| 31 |
26 30
|
mpi |
⊢ ( ∀ 𝑥 𝑥 = 𝑧 → ∃ 𝑥 𝑦 = 𝑧 ) |
| 32 |
31
|
a1d |
⊢ ( ∀ 𝑥 𝑥 = 𝑧 → ( ∀ 𝑥 ( 𝑥 ∈ 𝑦 ↔ 𝑥 ∈ 𝑧 ) → ∃ 𝑥 𝑦 = 𝑧 ) ) |
| 33 |
20 25 32
|
pm2.61ii |
⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝑦 ↔ 𝑥 ∈ 𝑧 ) → ∃ 𝑥 𝑦 = 𝑧 ) |
| 34 |
33
|
19.35ri |
⊢ ∃ 𝑥 ( ( 𝑥 ∈ 𝑦 ↔ 𝑥 ∈ 𝑧 ) → 𝑦 = 𝑧 ) |